(1) The linear transformation $T : \mathbb{P}_1 \to \mathbb{P}_1$ is defined by $T(p(x)) = \frac{d}{dx}p(x) + p(0)x$. Find the eigenvalues and eigenspaces of T . (Do not convert T into a matrix.)

Solution:

Eigenvalues: We want a scalar λ such that $T(p(x)) = \lambda p(x)$ for some polynomial $p(x) \in \mathbb{P}_1$. That is what an eigenvalue means.

Using the formula for T, that means $p'(x) + p(0)x = \lambda p(x)$.

To use this we need to write the (unknown) polynomial $p(x) = a_0 + a_1x$. That is a standard technique. Then $p'(x) = a_1$ and $p(0) = a_0$, so we want

$$
a_1 + a_0 x = \lambda (a_0 + a_1 x).
$$

Two polynomials are equal (as polynomials) if and only if they have the same coefficients. Therefore, we must have

$$
\lambda a_0 - a_1 = 0
$$
 and $\lambda a_1 - a_0 = 0$.

This is a homogeneous linear system with variables a_0, a_1 , whose coefficient matrix is

$$
\bar{A} = \begin{bmatrix} \lambda & -1 \\ -1 & \lambda \end{bmatrix}.
$$

We want to find λ such that \bar{A} $\begin{bmatrix} a_0 \\ a_1 \end{bmatrix}$ a_1 1 = $\lceil 0$ 0 1 has nontrivial solutions. (That is, the null space of A is not the zero subspace.) This happens if and only if A is singular. Our technique for deciding this is to set det $\bar{A}=0$ and solve for λ , the same as when we find eigenvalues of a matrix.

This means we want to solve

$$
\begin{vmatrix} \lambda & -1 \\ -1 & \lambda \end{vmatrix} = \lambda^2 - 1 = 0
$$

with solution $\lambda = \pm 1$. Those are the eigenvalues of T.

Eigenvectors: For eigenvalue $\lambda = 1$ we want to find all $p(x)$ such that $T(p(x)) =$ $1p(x)$; that is, $a_1 + a_0x = 1(a_0 + a_1x)$. The coefficients of powers of x on both sides must be equal, so $a_1 = a_0$ and $a_0 = a_1$. This is a homogeneous linear system with two equations and coefficient matrix $\bar{A} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ (putting $\lambda = 1$). Then Nul $\bar{A} =$ span{ $\lceil 1 \rceil$ 1 }. The eigenspace is a subspace of \mathbb{P}_1 so it consists of polynomials $a_0 + a_1x$ where $\begin{bmatrix} a_0 \\ a_1 \end{bmatrix}$ a_1 1 ∈ span{ $\lceil 1 \rceil$ 1 $\Big\}$. That is, $\Big\{a_0\Big\}$ a_1 1 = $\lceil a_0 \rceil$ a_0 1 . Thus, $p(x) = a_0 + a_0 x = a_0(1+x)$ and the eigenspace is span $\{1+x\}$. A basis is $\{1+x\}$.

For eigenvalue $\lambda = -1$ we want to find all $p(x)$ such that $T(p(x)) = -p(x)$. The calculation is similar. The matrix $\bar{A} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Its null space is Nul $\bar{A} = \text{span}\{\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ 1 1 }.

The eigenspace consists of polynomials $a_0 + a_1x$ where $\begin{bmatrix} a_0 \\ a_1 \end{bmatrix}$ a_1 1 ∈ span{ $[-1]$ 1 1 }. That is, $\left[a_0\right]$ a_1 1 = $\lceil -a_1 \rceil$ a_1 1 . Thus, $p(x) = a_1(-1+x)$ and the eigenspace is span $\{-1+x\}$. A basis is $\{-1 + x\}$.

(2) A linear transformation $T : \mathbb{P}_1 \to \mathbb{P}_1$ has matrix $[T]_e = \begin{bmatrix} 0 & 2 \\ 2 & 1 \end{bmatrix}$ with respect to the basis $C = \{1 - x, 3 + x\}$. Find the value of $T(2x)$.

Solution:

This involves three steps. (Taking shortcuts can easily lead to wrong answers.)

First step: Find $[2x]_0$. This is $\begin{bmatrix} a \\ b \end{bmatrix}$ b 1 such that $a(1-x) + b(3+x) = 2x$. Thus, $a + 3b = 0$ and $-a + b = 2$. Solution: $\begin{bmatrix} a \\ b \end{bmatrix}$ b 1 = $\lceil -3/2 \rceil$ 1/2 1 . Second step: Compute $[T(2x)]_e = [T]_e [2x]_e =$ $\begin{bmatrix} 0 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -3/2 \\ 1/2 \end{bmatrix}$ 1 = $\begin{bmatrix} 1 \end{bmatrix}$ $-5/2$ 1 . Final step: Find $T(2x)$ from its coordinate vector $[T(2x)]_c$. Thus,

$$
T(2x) = 1(1-x) - \frac{5}{2}(3+x) = -\frac{13}{2} - \frac{7}{2}x.
$$