Math 304-06

(1) The linear transformation $T : \mathbb{P}_1 \to \mathbb{P}_1$ is defined by $T(p(x)) = \frac{d}{dx}p(x) + p(0)x$. Find the eigenvalues and eigenspaces of T. (Do not convert T into a matrix.)

Solution:

Eigenvalues: We want a scalar λ such that $T(p(x)) = \lambda p(x)$ for some polynomial $p(x) \in \mathbb{P}_1$. That is what an eigenvalue means.

Using the formula for T, that means $p'(x) + p(0)x = \lambda p(x)$.

To use this we need to write the (unknown) polynomial $p(x) = a_0 + a_1 x$. That is a standard technique. Then $p'(x) = a_1$ and $p(0) = a_0$, so we want

$$a_1 + a_0 x = \lambda(a_0 + a_1 x).$$

Two polynomials are equal (as polynomials) if and only if they have the same coefficients. Therefore, we must have

$$\lambda a_0 - a_1 = 0$$
 and $\lambda a_1 - a_0 = 0$.

This is a homogeneous linear system with variables a_0, a_1 , whose coefficient matrix is

$$\bar{A} = \begin{bmatrix} \lambda & -1 \\ -1 & \lambda \end{bmatrix}.$$

We want to find λ such that $\overline{A} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ has nontrivial solutions. (That is, the null space of A is not the zero subspace.) This happens if and only if \overline{A} is singular. Our technique for deciding this is to set det $\overline{A} = 0$ and solve for λ , the same as when we find eigenvalues of a matrix.

This means we want to solve

$$\begin{vmatrix} \lambda & -1 \\ -1 & \lambda \end{vmatrix} = \lambda^2 - 1 = 0$$

with solution $\lambda = \pm 1$. Those are the eigenvalues of T.

Eigenvectors: For eigenvalue $\lambda = 1$ we want to find all p(x) such that T(p(x)) = 1p(x); that is, $a_1 + a_0x = 1(a_0 + a_1x)$. The coefficients of powers of x on both sides must be equal, so $a_1 = a_0$ and $a_0 = a_1$. This is a homogeneous linear system with two equations and coefficient matrix $\overline{A} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ (putting $\lambda = 1$). Then Nul $\overline{A} =$ span $\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$. The eigenspace is a subspace of \mathbb{P}_1 so it consists of polynomials $a_0 + a_1x$ where $\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} \in \text{span}\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$. That is, $\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} a_0 \\ a_0 \end{bmatrix}$. Thus, $p(x) = a_0 + a_0x = a_0(1+x)$ and the eigenspace is span $\{1 + x\}$. A basis is $\{1 + x\}$.

For eigenvalue $\lambda = -1$ we want to find all p(x) such that T(p(x)) = -p(x). The calculation is similar. The matrix $\bar{A} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Its null space is Nul $\bar{A} = \operatorname{span}\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix} \}$.

The eigenspace consists of polynomials $a_0 + a_1 x$ where $\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} \in \text{span}\{\begin{bmatrix} -1 \\ 1 \end{bmatrix}\}$. That is, $\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} -a_1 \\ a_1 \end{bmatrix}$. Thus, $p(x) = a_1(-1+x)$ and the eigenspace is $\text{span}\{-1+x\}$. A basis is $\{-1+x\}$.

(2) A linear transformation $T : \mathbb{P}_1 \to \mathbb{P}_1$ has matrix $[T]_{\mathfrak{C}} = \begin{bmatrix} 0 & 2\\ 2 & 1 \end{bmatrix}$ with respect to the basis $\mathfrak{C} = \{1 - x, 3 + x\}$. Find the value of T(2x).

Solution:

This involves three steps. (Taking shortcuts can easily lead to wrong answers.)

First step: Find $[2x]_{\mathfrak{C}}$. This is $\begin{bmatrix} a \\ b \end{bmatrix}$ such that a(1-x) + b(3+x) = 2x. Thus, a + 3b = 0 and -a + b = 2. Solution: $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -3/2 \\ 1/2 \end{bmatrix}$. Second step: Compute $[T(2x)]_{\mathfrak{C}} = [T]_{\mathfrak{C}} [2x]_{\mathfrak{C}} = \begin{bmatrix} 0 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -3/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1 \\ -5/2 \end{bmatrix}$. Final step: Find T(2x) from its coordinate vector $[T(2x)]_{\mathfrak{C}}$. Thus,

$$T(2x) = 1(1-x) - \frac{5}{2}(3+x) = -\frac{13}{2} - \frac{7}{2}x.$$