No consultation!—that includes no electronics.

(1) Does
$$A = \begin{bmatrix} 2 & 0 & 2 \\ 3 & 3 & 6 \\ 1 & 1 & 7 \end{bmatrix}$$
 have an inverse A^{-1} ? If it does, find A^{-1} .

(2) Use A^{-1} from problem 1 to solve the equation $A\mathbf{x} = \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix}$.

- (3) Which of these properties characterizes invertible matrices A? Circle Yes or No for each question. Read carefully.
 - (a) Yes No A is square.
 - (b) Yes No A is $n \times n$ and has n pivot columns.
 - (c) Yes No The columns of A are linearly independent.
 - (d) Yes No A is square and its columns are linearly independent.
 - (e) Yes No There is a matrix B such that AB = I, an identity matrix.