No consultation!—that includes no electronics.

- (1) (2 points each) Circle your answer to each question. You do not have to give a reason for your answer.
 - (a) True False \mathbb{P}_3 has a basis that has three elements.
 - (b) True False The dimension of \mathbb{P}_3 is 3.
 - (c) True False A basis for \mathbb{R}^2 is $\mathbf{e}_1, \mathbf{e}_2$.
 - (d) True False A basis for \mathbb{R}^2 is $\{\mathbf{e}_1, \mathbf{e}_2\}$.
 - (e) True False A basis for \mathbb{P}_2 is $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$.
 - (f) True False A basis for \mathbb{P}_2 is x^1, x^0 .
 - (g) True False A basis for \mathbb{P}_2 is $\{x^1, x^1 + 1\}$.
 - (h) True False A basis for \mathbb{P}_2 is x^2, x^1, x^0 .
 - (i) True False A basis for \mathbb{P}_2 is $\{x^1, x^1 + 1, x^2\}$.
 - (j) True False A basis for \mathbb{P}_2 is $\{x^1, x^1 + 1, x^2 + 1, x^2\}$.

(2) (10 points) In \mathbb{R}^3 , find the coordinates of $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ with respect to the basis $\mathcal{B}=\{\begin{bmatrix} 0\\0\\1 \end{bmatrix},\begin{bmatrix} 0\\1\\1 \end{bmatrix},\begin{bmatrix} 1\\1\\1 \end{bmatrix}\}$. Show all necessary work to justify your answer.