- (1) (2 points each) Circle your answer to each question. You do not have to give a reason for your answer.
 - (a) True <u>False</u> \mathbb{P}_3 has a basis that has three elements. [Reason: dim $\mathbb{P}_3 = 4$. A basis has 4 elements.]
 - (b) True <u>False</u> The dimension of \mathbb{P}_3 is 3.
 - (c) True <u>False</u> A basis for \mathbb{R}^2 is $\mathbf{e}_1, \mathbf{e}_2$. [A basis is a set. This is not a set.]
 - (d) <u>True</u> False A basis for \mathbb{R}^2 is $\{\mathbf{e}_1, \mathbf{e}_2\}$. [This is a set of 2 linearly independent vectors, or equally good they span the space, and it's the right number because dim $\mathbb{R}^2 = 2$, as you all know already.]
 - (e) True <u>False</u> A basis for \mathbb{P}_2 is $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$. [Not a set! Much worse: not one of them belongs to the set \mathbb{P}_2 .]
 - (f) True <u>False</u> A basis for \mathbb{P}_2 is x^1, x^0 . [Not a set! Worse, there's the wrong number, since dim $\mathbb{P}_2 = 3$.]
 - (g) True <u>False</u> A basis for \mathbb{P}_2 is $\{x^1, x^1 + 1\}$. [It's a set but dim $\mathbb{P}_2 = 3$.]
 - (h) True <u>False</u> A basis for \mathbb{P}_2 is x^2, x^1, x^0 . [Not a set! Is this getting tedious? But you get the message. Remember it on a test.]
 - (i) <u>True</u> False A basis for \mathbb{P}_2 is $\{x^1, x^1 + 1, x^2\}$. [Hooray! A set! It has the right number of elements. But do they span \mathbb{P}_2 ? Yes; that may be obvious.]
 - (j) True <u>False</u> A basis for \mathbb{P}_2 is $\{x^1, x^1 + 1, x^2 + 1, x^2\}$. [Alas, this is too, too much. We should have 3 polynomials, not 4.]

PLEASE TURN OVER FOR QUESTION 2

- (2) (10 points) In \mathbb{R}^3 , find the coordinates of $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ with respect to the basis $\mathcal{B} =$
 - $\left\{ \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}.$ Show all necessary work to justify your answer.

Solution 1. We want the numbers a_1, a_2, a_3 such that $\begin{bmatrix} 1\\2\\3 \end{bmatrix} = a_1 \begin{bmatrix} 0\\0\\1 \end{bmatrix} + a_2 \begin{bmatrix} 0\\1\\1 \end{bmatrix} + \begin{bmatrix} 1\\1 \end{bmatrix}$

 $a_3 \begin{bmatrix} 1\\1\\1 \end{bmatrix}$. That means we set up a linear system whose augmented matrix is

0	0	1	1		0	0	1	1	
0	1	1	2	\rightarrow	0	1	0	1	,
1	1	1	3		1	0	0	1	

giving the solution $a_1 = a_2 = a_3 = 1$. (Solve this in any way. You can go all the way to RREF, but in this simple example that isn't necessary.) The coordinate vector is

$$\begin{bmatrix} 1\\2\\3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

Solution 2. We notice that $\begin{bmatrix} 1\\2\\3 \end{bmatrix} = 1 \begin{bmatrix} 0\\0\\1 \end{bmatrix} + 1 \begin{bmatrix} 0\\1\\1 \end{bmatrix} + 1 \begin{bmatrix} 1\\1\\1 \end{bmatrix}$. Thus, $\begin{bmatrix} 1\\2\\3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$.

We know this is the only answer because a vector has only one coordinate vector, given the basis.

Remember: The question asks for a vector; you have to give a vector. A coordinate vector is always in \mathbb{R}^n ; in this case \mathbb{R}^3 .