No consultation!—that includes no electronics.

- (1) (3 points each) Read **very** carefully! In this problem, \mathbb{R}^n is a vector space with two bases, \mathcal{B} and \mathcal{C} . Circle your answers.
 - (a) True False $\underset{\mathcal{B}\leftarrow\mathcal{C}}{P}[\mathbf{v}]_{\mathcal{C}} = [\mathbf{v}]_{\mathcal{B}}.$
 - (b) True False $\underset{\mathcal{B}\leftarrow\mathcal{C}}{P}[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{C}}.$
 - (c) True False $P_{\mathcal{B}\leftarrow\mathcal{C}} P_{\mathcal{C}\leftarrow\mathcal{B}} = I$ (identity matrix).
 - (d) True False $P_{\mathcal{C} \leftarrow \mathcal{B}} P_{\mathcal{B} \leftarrow \mathcal{C}} = I$ (identity matrix).
- (2) (10 points) V is a 4-dimensional vector space and $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4}$ is a basis for V. What is the coordinate vector $[2\mathbf{b}_1 8\mathbf{b}_2 + \mathbf{b}_4]_{\mathcal{B}}$?

- (3) (10 points) V is a 3-dimensional vector space and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ is a basis for V. A vector $\mathbf{v} \in V$ has coordinates $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$. Write \mathbf{v} as a linear combination of the basis elements.
- (4) (8 points) A square matrix B has rank $36 = 6^2$ and nullity $64 = 8^2$. How big is B?
- (5) (3 points each) Is the statement about an $n \times n$ square matrix A equivalent to saying A is invertible? Circle your answers.
 - (a) Yes No The rows of A form a basis for \mathbb{R}^n .
 - (b) Yes No The columns of A form a basis for \mathbb{R}^n .
 - (c) Yes No A has rank n.
 - (d) Yes No A has rank 0.
 - (e) Yes No A has nullity n.
 - (f) Yes No A has nullity 0.