QUIZ 6 Math 304-06 Oct. 16, 2023

- (1) (3 points each) Read **very** carefully! In this problem, \mathbb{R}^n is a vector space with two bases, \mathcal{B} and \mathcal{C} . Circle your answers.
 - (a) <u>True</u> False $P_{\mathcal{B}\leftarrow\mathcal{C}}[\mathbf{v}]_{\mathcal{C}} = [\mathbf{v}]_{\mathcal{B}}.$ (b) True <u>False</u> $P_{\mathcal{B}\leftarrow\mathcal{C}}[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{C}}.$ (c) <u>True</u> False $P_{\mathcal{B}\leftarrow\mathcal{C}} P_{\mathcal{C}\leftarrow\mathcal{B}} = I$ (identity matrix). (d) <u>True</u> False $P_{\mathcal{C}\leftarrow\mathcal{B}} P_{\mathcal{B}\leftarrow\mathcal{C}} = I$ (identity matrix).
- (2) (6 points) V is a 4-dimensional vector space and $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4}$ is a basis for V. What is the coordinate vector $[2\mathbf{b}_1 8\mathbf{b}_2 + \mathbf{b}_4]_{\mathcal{B}}$?

Answer:
$$\begin{bmatrix} 2\\ -8\\ 0\\ 1 \end{bmatrix}.$$

(3) (6 points) V is a 3-dimensional vector space and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ is a basis for V. A vector $\mathbf{v} \in V$ has coordinates $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$. Write \mathbf{v} as a linear combination of the basis elements

basis elements.

Answer: $\mathbf{v} = a\mathbf{b}_1 + b\mathbf{b}_2 + c\mathbf{b}_3$.

(4) (8 points) A square matrix B has rank $36 = 6^2$ and nullity $64 = 8^2$. How big is B?

Answer: B has size 100×100 , or if you prefer, $10^2 \times 10^2$. (With thanks to the Pythagorean Theorem).

- (5) (3 points each) Which of these statements about an $n \times n$ square matrix A is equivalent to saying A is invertible? Circle your answers.
 - (a) <u>Yes</u> No The rows of A form a basis for \mathbb{R}^n .
 - (b) <u>Yes</u> No The columns of A form a basis for \mathbb{R}^n .
 - (c) <u>Yes</u> No A has rank n.
 - (d) Yes <u>No</u> A has rank 0.
 - (e) Yes <u>No</u> A has nullity n.
 - (f) <u>Yes</u> No A has nullity 0.