- Show all your work for each problem; show enough work to fully justify your answer. No credit without complete work!
- Start each numbered problem on a *fresh page*.
- Notation: The vector \mathbf{e}_i in \mathbb{R}^n is all zero except for a 1 in the *i*-th row.
- Notation: If A is a matrix, then f_A is the associated function defined by $f_A(\mathbf{x}) = A\mathbf{x}$.

(1) [Points: 10+5+8+3] Let $A = \begin{bmatrix} 3 & 4 \\ 2 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 1 & 0 \\ 0 & 3 & 4 \end{bmatrix}$. (a) Find A^{-1} .

(b) Use your work from part (a) to express A as a product of elementary matrices.

(c) Solve the matrix equation AX = B by using A^{-1} from part (a). (You must use A^{-1} , not any other method.)

(d) Find B^{T} .

- (2) [Points: 10+10] For each of the following linear systems, decide whether it is:
 - inconsistent,
 - consistent with a unique solution, or
 - consistent with infinitely many solutions.

(Don't forget to give justification for your decisions.)

(a) $x_1 - 2x_2 - 4x_3 = 3$ $x_1 + 3x_2 + 6x_3 = 6$ $4x_1 - 3x_2 - 6x_3 = 15$

(b) $-x_1 - x_2 - 2x_3 = 4$ $x_1 + 3x_2 + 5x_3 = 3$ $4x_1 + 2x_2 + 5x_3 = 2$ (3) [Points: 5] Express the vector $\mathbf{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \in \mathbb{R}^2$ as a linear combination of \mathbf{e}_1 and \mathbf{e}_2 .

(4) [Points: 4] Let M be a 6×3 matrix and f_M its associated function. What are the domain and codomain of f_M ?

(5) [Points: 10] Suppose A and B are invertible $n \times n$ matrices. Prove that AB has an inverse matrix and it is $B^{-1}A^{-1}$.

(6) [Points: 5] Consider all matrices of rank 3. Which of them are invertible?

(7) [Points: 10] Suppose A is an invertible 5×5 matrix. Can you say anything about the rank? About whether the associated function f_A is one-to-one? onto?

(8) [Points: 5+5] Define an n × n matrix B by the rule: b_{ij} = i + j.
(a) Prove that B is symmetric.

(b) Find Be_2 .

(9) [Points: 10] Define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by the rule: T takes a point **x** to its reflection in the vertical axis (that's the x_2 -axis). Find the matrix M that represents T.