Name _

- Show all your work for each problem; show enough work to fully justify your answer.
- All numerical answers should be in terms of actual numbers.
- Start each numbered problem on a *fresh page*.
- Hand in *both* this paper and test booklet.
- \mathbf{P}_n is the set of all polynomials whose degree is no greater than n.

1. [Points: 20]

(a) Show that the ordered set

$$B = \left(\begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right)$$

is a basis of \mathbb{R}^3 .

(b) Find the coordinate vector of
$$\mathbf{z} = \begin{bmatrix} 1\\ 3\\ 2 \end{bmatrix}$$
 with respect to B .

- (c) Find the coordinate vector of \mathbf{z} with respect to the ordered basis $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$.
- 2. [Points: 20] Consider the set $S = \{\mathbf{v}_1, \mathbf{v}_2\}$, where $\mathbf{v}_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 4\\3\\5 \end{bmatrix}.$

(a) Is
$$\mathbf{w} = \begin{bmatrix} 1\\ 3\\ 3 \end{bmatrix}$$
 in Span(S)?

- (b) Which vectors $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ are in Span(S)? For your answer, find the equation(s) that all such vectors must satisfy.
- (c) Find a basis for Span(S).
- 3. [Points: 10] Suppose A is an invertible $n \times n$ matrix. Prove that, if $f_A(\mathbf{x}) = \mathbf{0}$, then $\mathbf{x} = \mathbf{0}$.

PLEASE TURN OVER FOR MORE PROBLEMS

- 4. [Points: 30] In this question, $M = \begin{bmatrix} 1 & 3 & 3 & 0 \\ 2 & 6 & 6 & 8 \\ 1 & 3 & 3 & 4 \end{bmatrix}$.
 - (a) Find the rank of M.
 - (b) Find a basis for the null space, Nul(M).
 - (c) Find a basis for the column space, Col(M).
 - (d) Are the columns of M linearly independent? If not, find a linear dependence relation among them.
- 5. [Points: 5] Let L be a subspace of \mathbb{R}^n . Suppose $\mathbf{a} \in \mathbb{R}^n$ and let $K = \mathbf{a} + L$. Prove that if \mathbf{v} and \mathbf{w} are any two vectors in K, then $\mathbf{w} \mathbf{v} \in L$.
- 6. [Points: 15] (Remember that \mathbf{P}_n is a vector space.) In \mathbf{P}_3 , define $T = \{x^3, 2x^2 1, 3x + 2\}$.
 - (a) Is T linearly independent?
 - (b) Does $x^3 5x$ belong to Span(T)?