Directions: Answer all questions as completely as possible in your blue book. Answers with no work receive no credit.

1. (15 points) Let
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

a. Calculate $\det(\mathbf{A})$ by using the definition and expanding along the first row.

b. Calculate $det(\mathbf{A})$ by expanding along the second row.

c. Using your result determine if the matrix **A** invertible? Explain.

2. (15 points) Suppose the characteristic polynomial of a linear transformation is $p_T(\lambda) = \lambda^6 + 4\lambda^5 - 6\lambda^4 - 3\lambda^3 + 2\lambda^2 + \lambda$.

a. What is the dimension of the vector space in which the linear transformation acts?

b. Is T invertible? Explain.

3. (40 points) Let
$$\mathbf{M} = \begin{bmatrix} 2 & 2 & 4 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
.

- a. Find the characteristic polynomial of **M**.
- b. Find the eigenvalues of **M**.
- c. Find a basis for each eigenspace of **M**.
- d. Find a matrix **P** and a diagonal matrix **D** such that $\mathbf{M} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.
- e. What are the eigenvalues of \mathbf{M}^3 ?

4. (18 points) Indicate whether each statement is true of false.

a. If **A** is singular then **A** is not diagonalizable.

b. If λ_1 is an eigenvalue of T then there exists a vector \mathbf{v} such that $T\mathbf{v} = \lambda_1 \mathbf{v}$.

c. If λ_2 is not an eigenvalue of T then the only vector that satisfies $T\mathbf{v} = \lambda_2 \mathbf{v}$ is $\mathbf{v} = \mathbf{0}$.

d. $p_T(\lambda) = 3\lambda^4 - 2\lambda^3 + 7\lambda^2 + \lambda + 1$ is the characteristic polynomial of some linear transformation.

e. If $p_T(\lambda) = (2 - \lambda)^5$ then the dimension of the $\lambda = 2$ eigenspace is 5.

f. Given any matrix \mathbf{A} and any invertible matrix \mathbf{B} the matrix $\mathbf{B}\mathbf{A}\mathbf{B}^{-1}$ has the same characteristic polynomial as \mathbf{A} .

- 5. (12 points) Let $\mathbf{u} = (1, 3, -2)$ and $\mathbf{v} = (4, 1, 1)$.
 - a. Calculate $\mathbf{u} \cdot \mathbf{v}$. Are they orthogonal?
 - b. Calculate the length (norm) of each vector.
 - c. Normalize **u** so that it has length 1.

6. (12 points) Let
$$W = Span(\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\2 \end{bmatrix} \right\})$$
. Find a basis for W^{\perp} .

7. (20 points) Let
$$\mathbf{u} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 3\\ 1\\ -5 \end{bmatrix}$.

v.

a. Show **u** and **v** are orthogonal. b. Find the projection of $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ on to the subspace spanned by **u** and

8. (20 points) Given the basis
$$\mathbf{X} = \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\4\\3 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix} \right\}$$
 apply the

Gram-Schmidt process to this basis to form an orthogonal basis of \mathbb{R}^3 .

- 9. (28 points) Consider the following inconsistent system of equations: $x_1 - x_2 = 2$, $2x_1 + x_2 = 2$, $x_1 + x_2 = 1$.
 - a. Find the least squares solution of this system.
- b. Using your work in part a. find the projection of $\begin{bmatrix} 2\\2\\1 \end{bmatrix}$ on to the subspace spanned by $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ and $\begin{bmatrix} -1\\1\\1 \end{bmatrix}$.

10. (20 points) Recall the definition of an inner product is a function from $V\times V\to \mathbb{R}$ that satisfies the following properties:

- 1. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle.$ 1. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$. 2. $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$. 3. $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$. 4. $\langle \mathbf{v}, \mathbf{v} \rangle \ge 0$. 5. $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{v} = \mathbf{0}$.

Prove the dot product on \mathbb{R}^n satisfies these 5 properties. (Hint: Write the vectors as $\mathbf{v} = (v_1, v_2, ..., v_n)$ and use the fact that $\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{i=1}^n u_i v_i$).