Math 304-02 (Zaslavsky)

Do for discussion Mon., 5/1

An ordered basis for P_n is $X_n = (x^0, x, x^2, \dots, x^n)$. An ordered basis for \mathbb{R}^m is $E_m = (\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m)$.

Another ordered basis for \mathbf{P}_2 is $B = (x^2 + 1, x + 1, 1)$. One ordered basis for \mathbb{R}^3 is $C = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ (the same as E_3). Another ordered basis for \mathbb{R}^3 is $D = (\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3)$ where

$$\mathbf{w}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \quad \mathbf{w}_2 = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \quad \mathbf{w}_3 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}.$$

Still another ordered basis is $Y = (\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3)$ where

$$\mathbf{y}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \quad \mathbf{y}_2 = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \quad \mathbf{y}_3 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}.$$

1. Define a function $L: \mathbf{P}_2 \to \mathbb{R}^3$ by

$$L(a_0x^0 + a_1x + a_2x^2) = \begin{bmatrix} a_1 + a_0 \\ a_1 + a_2 \\ a_0 + a_2 \end{bmatrix}.$$

- (a) Prove that L is a linear transformation.
- (b) Now assume that L is a linear transformation. Prove that L is an isomorphism by finding the inverse function $L^{-1} : \mathbb{R}^3 \to \mathbb{P}_2$.
- (c) Find

$$p_1(x) = L^{-1}(\mathbf{e}_1), \quad p_2(x) = L^{-1}(\mathbf{e}_2), \quad p_3(x) = L^{-1}(\mathbf{e}_3),$$

and prove that $\{p_1(x), p_2(x), p_3(x)\}$ is a basis for \mathbf{P}_2 .

- 2. (a) Find the matrix $_{C}L_{B}$ of L with respect to ordered bases B and C.
 - (b) Find the matrix ${}_{D}L_{B}$ of L with respect to B and D.
 - (c) Is L an isomorphism? (Solve by using part (a) or (b), and not the method of the preceding problem.)

3. A linear transformation $F : \mathbb{R}^3 \to \mathbb{R}^3$ is defined by

$$F(\mathbf{w}_1) = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad F(\mathbf{w}_2) = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \quad F(\mathbf{w}_3) = \begin{bmatrix} 0\\0\\1 \end{bmatrix}.$$

- (a) Find the matrix $_{C}F_{D}$.
- (b) Find the matrix $_{D}(F^{-1})_{C}$. Multiply by $_{C}F_{D}$: what do you get?
- (c) Find the matrix $_{C}F_{C}$ and compare with (a).
- (d) Find $_{C}(F^{-1})_{C}$ and compare with (b). Multiply by $_{C}F_{C}$: what do you get? What does that say about the relationship between these two matrices?
- (e) Find ${}_{D}F_{C}$ and compare with (a), (b), and (c).

4. A linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ is defined by having matrix

$${}_{E_2}T_D = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 3 & 1 \end{bmatrix}$$

Find a formula for

$$T(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}).$$

5. A linear transformation $G: V \to W$ has the matrix

$$\begin{bmatrix} 4 & 8 & 0 & -1 \\ 0 & 0 & 3 & 1 \\ -2 & 0 & -3 & 1 \end{bmatrix}$$

with respect to bases X and Y.

- (a) What are the dimensions of V and W?
- (b) If V is a P_n and W is an \mathbb{R}^m , what are n and m?
- (c) Use the ordered bases $X = X_n$ for \mathbf{P}_n and $Y = E_m$ for \mathbb{R}^m . With your values for n and m from part (b), write out X and Y completely.
- (d) Find a direct formula for G of the form:

 $G(a_0 + a_1x + \dots + a_nx^n) =$ (fill in the correct matrix here).

- 6. Here we just have one vector space, \mathbb{R}^3 , but different bases.
 - (a) Find the basis-change matrix ${}_{Y}I_{D}$ that changes coordinates with respect to D in \mathbb{R}^{3} to coordinates with respect to Y.
 - (b) Find the basis-change matrix ${}_{D}I_{Y}$ that changes from coordinates with respect to Y to coordinates with respect to D. Multiply the answers to (a) and (b): what do you get? Is that a coincidence or will it always happen that way?
 - (c) Find the basis-change matrix ${}_{C}I_{D}$ that changes coordinates with respect to D in \mathbb{R}^{3} to coordinates with respect to C.
 - (d) Find the basis-change matrix ${}_{D}I_{C}$ that changes from coordinates with respect to C to coordinates with respect to D. Multiply the answers to (c) and (d): what do you get? Does this suggest an easier way to find the answer to part (d)?