Do for discussion Mon., 3/27/2006

In these problems, $A = \begin{bmatrix} 2 & 10 & 0 \\ 1 & 5 & 6 \\ -1 & -5 & 6 \end{bmatrix}$. Also, \mathbf{P}_n is the set of all polynomials whose degree is no greater than n.

- 1. Let L be a subspace of \mathbb{R}^n . Suppose $\mathbf{a} \in \mathbb{R}^n$ and let $L' = \mathbf{a} + L$.
 - (a) Prove that if \mathbf{v} and \mathbf{w} are any two vectors in L', then $\mathbf{w} \mathbf{v} \in L$.
 - (b) Prove that, if \mathbf{v} is any vector in L' and \mathbf{x} is any vector in L, then $\mathbf{v} + \mathbf{x} \in L'$.
- 2. Let K be an affine set in \mathbb{R}^n and let $\mathbf{a} \in K$. Prove that the set

$$-\mathbf{a} + K = \{-\mathbf{a} + \mathbf{v} : \mathbf{v} \in K\}$$

is a subspace of \mathbb{R}^n .

- 3. Find all solutions of the linear system $A\mathbf{x} = \mathbf{0}$. But first, answer the question: for which number n is every solution an element of \mathbb{R}^n ?
- 4. Find all solutions of the linear system $A\mathbf{x} = \begin{bmatrix} -4\\ -2\\ 4 \end{bmatrix}$. Use your solution of problem 3 to solve this problem. Express your answer in parametric form.

5. (a) Take two different solutions in problem 4 and calculate their sum. Is it in the solution set of $A\mathbf{x} = \mathbf{0}$? Is it in the null space of A?

- (b) Now do the same for the difference of the two vectors.
- (c) Now do the same for the zero vector.
- 6. Find a basis for Nul(A), also for Col(A), and for Row(A).
- 7. Find a vector a such that the affine set a + Nul(A)
 (a) is,
 (b) is not
 a subspace of ℝ³.
- 8. What are the dimensions of Nul(A) and Col(A)? What is the sum of the dimensions? How can you explain this sum?
- 9. (a) Find a basis for the vector space \mathbf{P}_2 .
 - (b) Prove it is a basis.
 - (c) What is the dimension of \mathbf{P}_2 ?
 - (d) What is the zero vector, $\mathbf{0}$, in \mathbf{P}_2 ?
- 10. In \mathbf{P}_2 , (a) prove that $\text{Span}\{x^2, 2x^2 1, 3x + 2\}$ is a subspace, and (b) find a basis for it. (c) What is its dimension?

- 11. In **P**₃, take the subset $S = \{x^3 + x + x^0, 2x^3 x^0, 3x + 2x^0, -x^3 + x\}$. (a) Prove that Span(S) is a subspace.
 - (b) Find a basis for Span(S) that is a subset of S.
 - (c) Find a basis for Span(S) that is not a subset of S.
 - (d) What is the dimension of Span(S)?
 - (e) Find a vector in \mathbf{P}_3 that is not in Span(S).
- 12. Define a function $F : \mathbf{P}_3 \to \mathbf{P}_2$ by

$$F(a_3x^3 + a_2x^2 + a_1x + a_0x^0) = a_0x^2 + (a_0 - 2a_2)x + (a_1 + a_3)x^0.$$

- (a) Show that F is a linear transformation.
- (b) Find Ker(F). Find a basis for Ker(F). What is dim Ker(F)?
- (c) Find Image(F). Find a basis for Image(F). What is dim Image(F)?
- (d) Compare dim $\operatorname{Ker}(F)$ + dim $\operatorname{Image}(F)$ with dim \mathbf{P}_3 .