Math 304-02 (Zaslavsky)

Do for discussion Tues., 4/4

P is the set of all polynomials in x, and \mathbf{P}_n is the subset consisting of all polynomials of degree at most n.

- 1. Prove Lemma A: In any vector space V, we have $0\mathbf{x} = \mathbf{0}$ for every $\mathbf{x} \in V$. Use the 8 properties of a vector space (page 42).
- 2. Prove Lemma B: In any vector space V, the negative of a vector \mathbf{x} is given by $-\mathbf{x} = (-1)\mathbf{x}$. Use the 8 properties, and also you may find you can use Lemma A.
- 3. (a) Let $V^0 = {\mathbf{x} : \mathbf{x} \in \mathbb{R}^3 \text{ and } x_1 + x_2 + x_3 = 0}$. Show that V^0 is a subspace of \mathbb{R}^3 . Deduce that V^0 is a vector space.

(b) Let $V^3 = {\mathbf{x} : \mathbf{x} \in \mathbb{R}^3 \text{ and } x_1 + x_2 + x_3 = 3}$. Show that V^3 is not a subspace of \mathbb{R}^3 and is not a vector space.

4. (a) Show that the set
$$S = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\3 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\-1\\0 \end{bmatrix}, \begin{bmatrix} -2\\0\\1 \end{bmatrix} \right\}$$
 spans \mathbb{R}^3 .

(b) Find a linear dependence among the members of S.

(c) Use your linear dependence to express one member of S as a linear combination of the others.

(d) Let T be S with the member in part (c) removed. Show that T spans \mathbb{R}^3 . Preferably, use the answers to (a) and (c) to shorten your work.

Notice that (b)-(d) are the steps in using the "Going Down Lemma" 5.2.3.

- 5. Use the "Going Down Lemma" 5.2.3 to find a basis for \mathbb{R}^3 that is a subset of S in Question 4. (To do this, use the method of Question 4 as often as necessary to make S smaller until it becomes linearly independent.)
- 6. (a) Prove that the set $T = \left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-2\\1 \end{bmatrix} \right\}$ spans V^0 of Exercise 3 and is linearly

independent.

(b) Show that T does not span \mathbb{R}^3 .

(c) Use the "Going Up Lemma" 5.2.2 to find a new vector in \mathbb{R}^3 , **u**, such that $R = T \cup \{\mathbf{u}\}$ is linearly independent. Show that R is a basis for \mathbb{R}^3 .

7. (a) Let $\mathbf{P}^0 = \{p(x) : p(x) \in \mathbf{P} \text{ and } p(1) = 0\}$. Show that \mathbf{P}^0 is a subspace of \mathbf{P} . Deduce that \mathbf{P}^0 is a vector space.

(b) Let $\mathbf{P}^3 = \{p(x) : p(x) \in \mathbf{P} \text{ and } p(1) = 3\}$. Show that \mathbf{P}^3 is not a subspace of \mathbf{P} and is not a vector space.

(c) Let $\mathbf{P}_3^0 = \{p(x) : p(x) \in \mathbf{P}_3 \text{ and } p(1) = 0\}$. Show that \mathbf{P}_3^0 is a subspace of \mathbf{P}_3 . Deduce that \mathbf{P}_3^0 is a vector space.

- 8. (a) Show that the set $S = \{x^3 4x, 2x^3 + x^2 2, -x^2 3x + 1, x^2 4, x^2, 3x\}$ spans \mathbf{P}_3 .
 - (b) Find a linear dependence among the members of S.

(c) Use your linear dependence to express one member of S as a linear combination of the others.

(d) Let T be S with the member in part (c) removed. Show that T spans \mathbf{P}_3 . Preferably, use the answers to (a) and (c) to shorten your work.

Notice that (b)-(d) are the steps in using the "Going Down Lemma" 5.2.3.

- 9. Use the "Going Down Lemma" 5.2.3 to find a basis for \mathbf{P}_3 that is a subset of S in Question 8. (To do this, use the method of the Question 8 as often as necessary to make S smaller until it becomes linearly independent.)
- 10. (a) Prove that the set S = {x⁰, x¹, x², ...} ⊆ P spans P and is linearly independent.
 (b) Show that S does not span P₄.
 (c) Use the "Going Up Lemma" 5.2.2 to find a new vector (i.e., polynomial) in P₄, u, such that R = S ∪ {u} is linearly independent. Show that R is a basis for P₄.
- 11. (a) Prove that the set $T = \{x^1 x^0, x^2 x^0, x^3 x^0\}$ spans \mathbf{P}_3^0 and is linearly independent.

(b) Show that T does not span \mathbf{P}_3 .

(c) Use the "Going Up Lemma" 5.2.2 to find a new vector (i.e., polynomial) in \mathbf{P}_3 , \mathbf{u} , such that $R = T \cup {\mathbf{u}}$ is linearly independent subset. Show that R is a basis for \mathbf{P}_3 .