
Math 304-02 (Zaslavsky) Problem Set IX: Solutions 4/7–?/2006

Do for discussion Tues., 4/4

P is the set of all polynomials in x, and Pn is the subset consisting of all polynomials of
degree at most n.

1. Prove Lemma A: In any vector space V , we have 0x = 0 for every x ∈ V . Use the
8 properties of a vector space (page 42).

Solution. Consider the sum (0+0)x. Since 0+0 = 0 (ordinary arithmetic with real
numbers),

(0 + 0)x = 0x.

By one of the distributive laws,

(0 + 0)x = 0x + 0x.

Therefore,

0x + 0x = 0x.

We know 0x has a negative, −0x. We add this to both sides:

(0x + 0x) + (−0x) = 0x + (−0x).

Then we use the associative law of addition to get

0x +
(
0x + (−0x)

)
= 0x + (−0x).

Next, we use the definition of a negative to simplify this to

0x + 0 = 0.

Finally, we use the definition of a zero vector to simplify this to

0x = 0.

2. Prove Lemma B: In any vector space V , the negative of a vector x is given by
−x = (−1)x. Use the 8 properties, and also you may find you can use Lemma A.

Solution. To show a vector y is the negative of a vector x, we show that x+y = 0.
Let’s prove that y = (−1)x has this property.

x + (−1)x = 1x + (−1)x by Property 8, page 42

=
(
1 + (−1)

)
x by the distributive law

= 0x = 0 by Lemma A.
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3. (a) Let V 0 = {x : x ∈ R3 and x1 + x2 + x3 = 0}. Show that V 0 is a subspace of R3.
Deduce that V 0 is a vector space.

Solution. We have to prove
(1) u,v ∈ V 0 imply that u + v ∈ V 0,
(2) u ∈ V 0, c ∈ R imply that cu ∈ V 0, and
(3) 0 ∈ V 0.

Proof of (1): We know that u1 + u2 + u3 = 0 and v1 + v2 + v3 = 0. Adding,
(u1 + v1) + (u2 + v2) + (u3 + v3) = 0 (*). Since u + v = (u1 + v1, u2 + v2, u3 + v3),
equation (*) tells us that u + v ∈ V 0.

Proof of (2): We know that u1 + u2 + u3 = 0. Multiplying by c, we get cu1 + cu2 +
cu3 = 0 (**). Since cu = (cu1, cu2, cu3), equation (**) tells us that cu ∈ V 0.

Proof of (3): 0 = (0, 0, 0), and the sum of the entries is 0, so 0 ∈ V 0.

(b) Let V 3 = {x : x ∈ R3 and x1 + x2 + x3 = 3}. Show that V 3 is not a subspace
of R3 and is not a vector space.

Solution. There are several ways to prove this, since V 3 violates all three properties
of a vector space. For instance, the fact that 0 /∈ V 3 (because 0 + 0 + 0 6= 3) shows
that V 3 violates property (3) mentioned in part (a).

4. (a) Show that the set S =


1

0
1

 ,

1
1
3

 ,

0
1
0

 ,

 2
−1
0

 ,

−2
0
1

 spans R3.

Solution. We can use known matrix methods, since Span(S) = Col(M) if we form

the matrix M =

1 1 0 2 −2
0 1 1 −1 0
1 3 0 0 1

. Find the pivot positions of M by finding a

row echelon form. There is a pivot position in every row. (The pivot columns are
the first, second, and third columns.) Therefore, Col(M) equals all of R3; that is, S
spans all of R3.

(b) Find a linear dependence among the members of S.

Solution. You might be able to guess a linear dependence (then you’ll have to check
it—show complete work!), but it’s better to know a general method to find one, or
prove none exists. The general method is to find the null space of M . If the null
space is the zero vector space, there are no linear dependencies. Any nonzero element
of the null space gives a linear dependence relation.
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We find the null space in the usual way, by reducing M to reduced row echelon

form, which is

1 0 0 3 −7
2

0 1 0 −1 3
2

0 0 1 0 −3
2

. Thus the general solution to Mx = 0 is

x = x4


−3
1
0
1
0

 + x5


7
2
−3

2
3
2
0
1

 , i.e., Nul(M) = Span




−3
1
0
1
0

 ,


7
2
−3

2
3
2
0
1


 .

These vectors (for all choices of real numbers x4, x5) are all the elements of the null
space. Pick any one that isn’t 0 and you have a linear dependence. For instance,
pick (−3, 1, 0, 1, 0) and you have the dependence

(A) (−3)

1
0
1

 + 1

1
1
3

 + 0

0
1
0

 + 1

 2
−1
0

 + 0

−2
0
1

 = 0.

(c) Use your linear dependence to express one member of S as a linear combination
of the others.

Solution. In equation (A) we can solve for any of the three vectors whose coefficients
are nonzero. I’ll pick the first: then1

0
1

 =
1

3

1
1
3

 +
1

3

 2
−1
0

 .

(That’s my first solution.)
But if I picked the last vector, then I’d get 2

−1
0

 = 3

1
0
1

−
1

1
3

 .

There are other possible solutions, too. Do you see them?

(d) Let T be S with the member in part (c) removed. Show that T spans R3.
Preferably, use the answers to (a) and (c) to shorten your work.

Solution. In my first solution to (c), T =


1

1
3

 ,

0
1
0

 ,

 2
−1
0

 ,

−2
0
1

. I’m stuck:

I can’t use (a) and (c) to help me. I’ll have to find the pivot positions of the matrix
formed by these four vectors, which means work. I’ll omit this work because it’s
similar to the work in (c).
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But if I picked the last vector, as in my second solution to (c), then

T =


1

0
1

 ,

1
1
3

 ,

0
1
0

 ,

−2
0
1

 .

The matrix with these vectors as columns is M ′ =

1 1 0 −2
0 1 1 0
1 3 0 1

. You’ll notice

that reducing this to row echelon form uses exactly the same operations as with M .
That’s because the column I removed is a nonpivot columns, so the pivot columns
are the same as in M , and it’s the pivot columns that tell you which row operations
to do. Since we do the same row operations on the same columns (except one), we’ll
get the same pivot columns. Therefore, the reduced row echelon form of M ′ can
be obtained from that of M by We’ll have 3 pivot columns for the 3 rows, which
means that Col(M ′) = R3. That means T spans R3. (See, I didn’t have to do any
calculations!)

Notice that (b)–(d) are the steps in using the “Going Down Lemma” 5.2.3.

5. Use the “Going Down Lemma” 5.2.3 to find a basis for R3 that is a subset of S in
Question 4. (To do this, use the method of Question 4 as often as necessary to make
S smaller until it becomes linearly independent.)

Solution. The first step is to find one vector to remove from S. We did this in
Question 4, getting T ( which is S with one vector removed). We did it by picking
a vector that is a linear combination of the other vectors. We don’t have to verify
that the new set spans the same subspace as the old set, because the “Going Down
Lemma” guarantees that will be true.

The second step is to find a vector in T that is a linear combination of the other
vectors in T . Of course, which one it is depends on which T you picked in 4(c, d).
I’ll follow the second solution in Question 4, where I got

T =


1

0
1

 ,

1
1
3

 ,

0
1
0

 ,

−2
0
1

 .

The matrix of these vectors, M ′ (from 4(d)), has reduced row echelon form

1 0 0 −7
2

0 1 0 3
2

0 0 1 −3
2

.

Thus,

Nul(M ′) = Span




7
2
−3

2
3
2
1


 .
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A linear dependence is

7

2

1
0
1

− 3

2

1
1
3

 +
3

2

0
1
0

 +

−2
0
1

 = 0.

You can solve for any one of these four vectors, so any one of them is a linear
combination of the other three. You can delete any one from T to get a new set U
that has the same span. For instance, I will delete the last vector, giving

U =


1

0
1

 ,

1
1
3

 ,

0
1
0

 .

If U is linearly dependent, we have to keep going like this, removing one vector
at a time. But if U is linearly independent, we have a basis for Span(U) (which
= Span(T ) = Span(S) = R3). We check U for linear dependence in the usual way:
we make a matrix M ′′ from the three vectors, and find the pivot positions. It turns
out that every column has a pivot position. Thus, U is independent. Therefore, U is
a basis for Span(U) = R3. We’re done!

6. (a) Prove that the set T =


 1

0
−1

 ,

 1
−2
1

 spans V 0 of Exercise 3 and is linearly

independent.

Solution. First we show that T ⊆ V 0. (1, 0,−1) ∈ V 0 because the sum of its entries
is 0. Similarly, (1,−2, 1) ∈ V 0 because the sum of its entries is 0.

Now we show that every x ∈ V 0 is a linear combination of the vectors in T . We
do this by showing that the equation

c1

 1
0
−1

 + c2

 1
−2
1

 =

x1

x2

x3


has a solution for every x such that x1 + x2 + x3 = 0. Set up the augmented matrix
and row reduce: 1 1 x1

0 −2 x2

−1 1 x3

 →
1 1 x1

0 −2 x2

0 2 x1 + x3

 →
1 1 x1

0 −2 x2

0 0 x1 + x2 + x3


The original equation is solvable ⇐⇒ if there is no pivot position in the last column
⇐⇒ x1 +x2 +x3 = 0 ⇐⇒ x ∈ V 0. Thus, we conclude that x ∈ Span(T ) ⇐⇒ x ∈
V 0. Stated in a different way: Span(T ) = V 0.

(b) Show that T does not span R3.

Solution. Since we found the exact span of T in (a), namely V 0, and V 0 6= R3

obviously, we also proved that T does not span R3.
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(c) Use the “Going Up Lemma” 5.2.2 to find a new vector in R3, u, such that
R = T ∪ {u} is linearly independent. Show that R is a basis for R3.

Solution. According to the “Going Up Lemma”, we need to find u /∈ V 0. This is
easy. I will pick u = (0, 0, 1), which is not in V 0 because the sum of its entries is not
0.

Now we have to show that R = T ∪ {u} =


 1

0
−1

 ,

 1
−2
1

 ,

0
0
1

 is a basis for

R3. We form the matrix M =

 1 1 0
0 −2 0
−1 1 1

 and row reduce to find the rank. (As

usual in this solutions handout, I omit the details, which you should always include
when you hand in your solutions to me!) We’ll find that the rank of M is 3, which
equals the number of rows; therefore (by some theorem in Chapter 4), R spans R3.
We already knew R was independent by the “Going Up Lemma”, but another way
we know it is by the fact that the rank of M equals the number of columns. Either
way, since R is independent and spans R3, it is a basis for R3.

7. (a) Let P0 = {p(x) : p(x) ∈ P and p(1) = 0}. Show that P0 is a subspace of P.
Deduce that P0 is a vector space.

Solution. This is similar to Question 3(a). I will post details when I have more
time, but the three properties to prove are the same.

(b) Let P3 = {p(x) : p(x) ∈ P and p(1) = 3}. Show that P3 is not a subspace of
P and is not a vector space.

Solution. This is similar to Question 3(b). For instance, the zero vector in P is the
zero polynomial, p(x) = 0, and it is not in P3 because evaluating it at x = 0 gives 0,
not 3.

(c) Let P0
3 = {p(x) : p(x) ∈ P3 and p(1) = 0}. Show that P0

3 is a subspace of P3.
Deduce that P0

3 is a vector space.

Solution. The solution will be exactly like the solution of part (a).

8. (a) Show that the set S = {x3 − 4x, 2x3 + x2 − 2,−x2 − 3x + 1, x2 − 4, x2, 3x} spans
P3.

Solution. We have to show that, for any p(x) ∈ P3, p(x) is a linear combination of
S. That means: for any polynomial a3x

3 + a2x
2 + a1x + a0, the equation

(P)
c1(x

3 − 4x)+c2(2x
3 + x2 − 2) + c3(−x2 − 3x + 1) + c4(x

2 − 4) + c5(x
2) + c6(3x)

= a3x
3 + a2x

2 + a1x + a0

has a solution c = (c1, c2, c3, c4, c5, c6). The method is to collect terms in Equation
(P) and compare coefficients of like powers on both sides; this gives you a linear
system in which the unknowns are c1, c2, . . . , c6. You have to show there is a solution
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to this system, no matter what the real numbers a0, . . . , a3 happen to be. You do
this by the usual matrix method.

(b) Find a linear dependence among the members of S.

Solution. You do this by finding a nontrivial solution (that is, not all ci equal to 0)
for Equation (P) with right-hand side 0. Otherwise, it’s similar to Question 4(b).

(c) Use your linear dependence to express one member of S as a linear combination
of the others.

Solution. Similar to Question 4(c).

(d) Let T be S with the member in part (c) removed. Show that T spans P3.
Preferably, use the answers to (a) and (c) to shorten your work.

Solution. Similar to Question 4(d).

Notice that (b)–(d) are the steps in using the ”Going Down Lemma” 5.2.3.

9. Use the “Going Down Lemma” 5.2.3 to find a basis for P3 that is a subset of S in
Question 8. (To do this, use the method of Question 8 as often as necessary to make
S smaller until it becomes linearly independent.)

Solution. Similar to Question 4. I may post a solution if I have time.

10. (a) Prove that the set S = {x0, x1, x2, . . .} ⊆ P spans P and is linearly independent.

Solution. The proof that S is independent was given in class and appears in the
book. The proof that it spans P is simply that every polynomial has the form
anx

n + an−1x
n−1 + · · ·+ a1x + a0x

0, which is a linear combination of the monomials
xn, xn−1, . . . , x, x0, which are elements of S.

(b) Show that S does not span P4.

Solution. Span(S) contains x5, which is not an element of the set P4. Therefore, S
does not span P4.

(c) Use the “Going Up Lemma” 5.2.2 to find a new vector (i.e., polynomial) in P4,
u, such that R = S ∪ {u} is linearly independent. Show that R is a basis for P4.

Solution.
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11. (a) Prove that the set T = {x1 − x0, x2 − x0, x3 − x0} spans P0
3 and is linearly

independent.

Solution. Similar to Question 6(a), using the idea of the setup of Question 8 as in
Equation (P).

(b) Show that T does not span P3.

Solution.

(c) Use the “Going Up Lemma” 5.2.2 to find a new vector (i.e., polynomial) in P3,
u, such that R = T ∪ {u} is linearly independent subset. Show that R is a basis for
P3.

Solution.
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