Write a good reason for each answer.

- (1) Is the set S an orthogonal set? Use the stated inner product.
 - (a) Vector space \mathbb{R}^3 with the dot product. $S = \left\{ \begin{bmatrix} 1\\ 2\\ -4 \end{bmatrix}, \begin{bmatrix} 2\\ 1\\ 1 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} \right\}.$

(b) Vector space $\mathcal{P}_2(x)$ with the integral inner product $\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x)dx$. $S = \{x, x^2 - 1\}.$

PLEASE TURN OVER FOR ANOTHER PROBLEM

(2) In an inner product space V, the vectors of the set $A = {\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}}$ are an orthogonal set. Are they linearly independent? Circle one, and explain.

Tes always no, never tes and no are both possible no ruc	Yes, always	No, never	Yes and no are both possible	No idea!
--	-------------	-----------	------------------------------	----------