Fully explain why your answer is correct, in every question.

(1) (10 points) The solution set to this linear system is a subset of \mathbb{R}^3 . Is it a subspace of \mathbb{R}^3 ?

$$2x_1 + x_3 = 0$$
$$x_2 + x_3 = 4$$

Answer: No.

Reasons (any one is a good answer):

1. **0** is not in the solution space.

2. If $\mathbf{x} = (x_1, x_2, x_3)$ is in the solution space, and if t is a scalar, then $t\mathbf{x}$ should be in the solution space. We'll test this. \mathbf{x} satisfies the linear system (because it is a solution, duh!) We test $t\mathbf{x} = (tx_1, tx_2, tx_3)$ for being a solution:

$$2(tx_1) + (tx_3) = 0?$$

(tx_2) + (tx_3) = 4?

Simplify:

$$t(2x_1 + x_3) = 0?$$

$$t(x_2 + x_3) = 4?$$

Using the fact that \mathbf{x} is a solution:

$$t(0) = 0$$
? Yes
 $t(4) = 4$? Not for every scalar t .

Conclusion: Our set is not a subspace.

3. If $\mathbf{x} = (x_1, x_2, x_3)$ and $\mathbf{y} = (y_1, y_2, y_3)$ are in the solution space, then $\mathbf{x} + \mathbf{y}$ should be in the solution space. We'll test this. We test $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$ for being a solution:

$$2(x_1 + y_1) + (x_3 + y_3) = 0?$$

(x₂ + y₂) + (x₃ + y₃) = 4?

Rearrange:

$$(2x_1 + x_3) + (2y_1 + y_3) = 0?$$

(x₂ + x₃) + (y₂ + y₃) = 4?

Using the fact that \mathbf{x} and \mathbf{y} are solutions:

$$(0) + (0) = 0?$$

(4) + (4) = 4? No. So **x** + **y** is not a solution.

Conclusion: Our set is not a subspace.

4. The system is inhomogeneous, therefore the solution set is not a subspace.

(2) (10 points) The solution set to this linear system is a subset of \mathbb{R}^3 . Is it a subspace of \mathbb{R}^3 ?

$$2x_1 + x_3 = 0$$
$$x_2 + x_3 = 0$$

Answer: Yes.

The reason (all three parts are necessary):

1. $\mathbf{0} = (\mathbf{0}, \mathbf{0}, \mathbf{0})$ is in the solution space because substituting $(x_1, x_2, x_3) = (0, 0, 0)$, we get equality. Conclusion: Our set may be a subspace.

2. If $\mathbf{x} = (x_1, x_2, x_3)$ is in the solution space, and if t is a scalar, then $t\mathbf{x}$ should be in the solution space. We'll test this. \mathbf{x} satisfies the linear system (because it is a solution, duh!) We test $t\mathbf{x} = (tx_1, tx_2, tx_3)$ for being a solution:

$$2(tx_1) + (tx_3) = 0?$$

(tx_2) + (tx_3) = 0?

Simplify:

$$t(2x_1 + x_3) = 0?$$

$$t(x_2 + x_3) = 0?$$

Using the fact that \mathbf{x} is a solution:

$$t(0) = 0$$
? Yes
 $t(0) = 0$? Yes, for every scalar t.

Conclusion: Our set may be a subspace.

3. If $\mathbf{x} = (x_1, x_2, x_3)$ and $\mathbf{y} = (y_1, y_2, y_3)$ are in the solution space, then $\mathbf{x} + \mathbf{y}$ should be in the solution space. We'll test this. We test $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$ for being a solution:

$$2(x_1 + y_1) + (x_3 + y_3) = 0?$$

(x₂ + y₂) + (x₃ + y₃) = 0?

Rearrange:

$$(2x_1 + x_3) + (2y_1 + y_3) = 0?$$

(x₂ + x₃) + (y₂ + y₃) = 0?

Using the fact that \mathbf{x} and \mathbf{y} are solutions:

$$(0) + (0) = 0?$$

(0) + (0) = 0? Yes. So **x** + **y** is a solution.

Conclusion: Our set is a subspace. It satisfies all three properties that a subset of a vector space (\mathbb{R}^3) needs to satisfy to be a subspace.

Alternative reason:

The system is homogeneous, therefore the solution set is a subspace.

(3) (10 points) Invert this matrix: $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$.

Solution:

$$\begin{bmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 0 & 1 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & 1 & 2 & -2 \\ 0 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & -1 & 1 \end{bmatrix}$$

Since we end up with the identity matrix I on the left, the matrix on the right is the inverse matrix:

$$A^{-1} = \begin{bmatrix} 1 & 2 & -2 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$