
Math 323 TEST 2 10/28/2015 SOLUTIONS

1. [Points: 1/2] You can write your answer on the test paper.

2. [Points: 10+10+5] A surface has equation f(x, y, z) = 2, where f(x, y, z) = x3+3y2−9z2.
Grading note: In (a, b) I gave 6 points for r′(t) (which is needed for both parts),
7 points for the tangent plane, and 7 points for the directional derivative.

(a) Find an equation of the tangent plane to the surface at the point (2, 1,−1).
Solution: The first step is to find the gradient:

∇f(x, y, z) = 〈3x2, 6y,−18z〉.
Then evaluate it at the point (2, 1,−1): ∇(2, 1,−1) = 〈12, 6, 18〉. Then
use this vector as the coefficients in the equation of a plane that contains
the point (2, 1,−1):

〈12, 6, 18〉 · 〈x, y, z〉 = 〈12, 6, 18〉 · 〈2, 1,−1〉,
simplifying to

12x+ 6y + 18z = 12,

which you may further simplify to 2x+ y + 3z = 2.
Notice that the value 2 = f(x, y, z) that determines this level surface

has no role in the solution.
Notice that I do not use the general form ∇f(x, y, z) in writing the

tangent plane equation. That can cause errors because the x, y, z in the
gradient are completely different from the x, y, z in the tangent plane
equation. I put in the numbers first, that is, ∇f(2, 1,−1). If you
want to see how this looks in general, the point where we get the tan-
gent plane should be called (x0, y0, z0) and the gradient at that point is
∇f(x0, y0, z0); then the equation of the tangent plane is ∇f(x0, y0, z0) ·
〈x, y, z〉 = ∇f(x0, y0, z0) · 〈x0, y0, z0〉. All the subscripted quantities are
supposed to be known values, while x, y, z are variables subject to this
equation.

(b) Find the directional derivative of the function f(x, y, z) at (2, 1,−1) in the direction
of 〈1, 1,−1〉.

Solution: We need two things: the gradient at (2, 1,−1), which we already
know, and the unit vector in the direciton of u, which is (1/

√
3)〈1, 1,−1〉.

Thus, the directional derivative is

∇(2, 1,−1) · 1√
3
〈1, 1,−1〉 =

4√
3
.

(c) Find all points on the surface where the tangent plane is horizontal.
Solution: A horizontal tangent plane means the gradient is vertical, i.e.,
it has the form ∇f(x, y, z) = 〈0, 0, k〉, where k 6= 0. Comparing to the
gradient equation, that means 3x2 = 0 and 6y = 0, thus x = y = 0.
So, we need a point (0, 0, z) on the surface. It satisfies the equation
03 + 3 · 02 − 9z2 = 2, in other words, z2 = −2/9. But that’s impossible.
So the answer is: There are no such points!
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3. [Points: 19] Let f(x, y) = x2− xy+ 2y4. Find all local minima and maxima of f(x, y) in
the xy-plane, both the points and their function values.

Solution: First step: The critical points are where the gradient = 0. The
gradient is ∇f(x, y) = 〈2x − y,−x + 8y3〉. (Remember, we’re in 2 dimensions.)
Therefore, y = 2x and x = 8y3. You eliminate one of these variables, getting
(for instance) x = 64x3. Then factor : 64x3 − x = 0 (Never divide by x! ), so
x(64x2 − 1) = 0, so x = 0 or x = ±1/8. Since y = 2x, the critical points are
(0, 0), (1/8, 1/4), and (−1/8,−1/4).

Now test the critical points using the second-partials determinant.∣∣∣∣fxx fxy
fyx fyy

∣∣∣∣ =

∣∣∣∣ 2 −1
−1 24y2

∣∣∣∣ = 48y2 − 1.

(Be careful to do the second partials correctly. Partials are tricky when you’re
in a hurry.) Also, keep fxx = 2 in mind. Now here are the results for the three
critical points:

Point D fxx Type Function Value

(0, 0) −1 < 0 Saddle point not required
(1
8
, 1
4
) 48(1

4
)2 − 1 = 2 > 0 2 > 0 Local min. − 1

128
(−1

8
,−1

4
) 48(−1

4
)2 − 1 = 2 > 0 2 > 0 Local min. − 1

128

Addendum: You can prove by algebra that this function has absolute minima
(they are the local minima) and no absolute maximum, but that isn’t required.

4. [Points: 10] Evaluate the integral

∫∫
D

x2 sin y dA, where D is the region bounded by

x = 0, y = 3π, and x = 2y.
Solution: You should draw the region; though it isn’t required, it makes the setup
safer. However, I don’t have good computer drawing facilities so I’m omitting
that. Description: It’s a triangle with vertices at (0, 0), (0, 3π), and (6π, 3π).
The left side is x = 0, the top is y = 3π, and the bottom right is x = 2y, or
y = 1

2
x if you prefer.

Method 1: Put the y-integral inside:
∫∫

D
x2 sin y dA =

∫ 6π

0

∫ 3π
1
2
x
x2 sin y dydx.

We get the limits of integration from the outside in: in D, the lowest value of
x is 0 and the highest is 6π. These limits cannot depend on y because y will
disappear in computing the inner integral. Having set up the limits for x, we
have to find the range of y for each value of x in the interval [0, 6π]. A value
of x gives a vertical line. That line intersects D in an interval. The low end of
the interval is at the lower boundary of D, i.e., y = 1

2
x. The high end of the

interval is at the top of D, i.e., y = 3π. Those are the lower and upper limits of
integration for y (in the inner integral).

Method 2: Put the x-integral inside:
∫∫

D
x2 sin y dA =

∫ 3π

0

∫ 2y

0
x2 sin y dxdy.

From the outside in: in D, the lowest value of y is 0 and the highest is 3π.
These limits cannot depend on x because x will disappear in computing the
inner integral. Now we have to find the range of x for each value of y in the
interval [0, 3π]. A value of y gives a horizontal line. That line intersects D in an
interval. The left end of the interval is at x = 0. The right end of the interval
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is at x = 2y. Those are the lower and upper limits of integration for x (in the
inner integral).

I will now do the inner integration in Method 1:
∫ 6π

0

∫ 3π
1
2
x
x2 sin y dydx =∫ 6π

0

[
x2(− cos y)

]3π
y= 1

2
x
dx =

∫ 6π

0
x2[− cos 3π + cos 1

2
x] dx =

∫ 6π

0
x2[1 + cos 1

2
x] dx.

The main point is to remember that, while you integrate with respect to y, x is
like a constant. Don’t get confused by its appearing to be a letter (of course it
is a letter, but it doesn’t vary while you integrate). (Method 2’s inner integral
is also simple.)

I gave 6 points for correctly setting up an iterated integral. Then 2 points for
the inner integration. What remains is the outer integration; since that requires
integration by parts (twice in both methods) and is not important for this course,
I gave only 2 points for doing it, and I didn’t expect it when setting the grading
guidelines.

5. [Points: 15+10+10+10] A space curve is given by the formula r(t) = 〈t, 3√
2
t2, 3t3〉 for

t ≥ 0.
(a) Find the arc length function s(t) measured from t = 0.

Solution: The arc length function is s(t) =
∫ t
0
|r′(t)| dt. So we have to

compute |r′(t)| first. r′(t) = 〈1, 3
√

2 t, 9t2〉, so

|r′(t)| =
√

12 + (3
√

2 t)2 + (9t2)2 =
√

1 + 18t2 + 81t4 =
√

(1 + 9t2)2 = 1 + 9t2.

It’s essential to see that you can simplify the square root; otherwise in-
tegrating is long and complicated. Now the integral is easy:

s(t) =

∫ t

0

1 + 9t2 dt = t+ 3t3.

That’s the answer to (a).
Note that the |r′(t)| in the integral has to be the function, not the value

at t = 0 or 1, and I did not ask for the arc length from t = 0 to a specific
number like t = 1. Also, arc length (being a length) is not a vector.

(b) Find the unit tangent vector T(t) at the point where t = 1.
Solution: Using the definition,

T(t) =
1

|r′|
r′ =

1

1 + 9t2
〈1, 3
√

2 t, 9t2〉.

Substituting t = 1, we get

T(1) =
1

10
〈1, 3
√

2, 9〉.

(c) Find the normal vector N at the same point.
Solution: The definition says that N is the unit vector in the direction of
T′(t), i.e., N(t) = T′(t)/|T′(t)|. You cannot differentiate T(1); you must
use a general formula for T(t). Fortunately, I have that in (b). I use the

3



quotient formula for the derivative, with the result that

T′(t) =
1

(1 + 9t2)2
[
(1 + 9t2)〈0, 3

√
2, 18t〉 − 18t〈1, 3

√
2 t, 9t2〉

]
=

1

(1 + 9t2)2
[
〈0, 3
√

2 + 27
√

2t2, 18t+ 162t3〉 − 〈18t, 54
√

2 t2, 162t3〉
]

=
1

(1 + 9t2)2
〈−18t, 3

√
2− 27

√
2 t2, 18t〉.

Therefore,

T′(1) =
1

100
〈18,−24

√
2, 18〉 =

6

100
〈3,−4

√
2, 3〉

and

|T′(1)| = 6

100

√
32 + 42 · 2 + 32 =

3
√

2

10
.

Finally, we can write that

N(1) =
T′(t)

|T′(t)|
=

√
2

10
〈3,−4

√
2, 3〉.

I didn’t expect people to do all this. I did expect A students, but not
C students, to know that N = T′/|T′|, but that was just for 2 points.

(d) What is the curvature of this curve at t = 1? Remember to simplify your answer as
far as you can.

Solution:
Method 1: After doing all that calculation for (c) it’s easy to use the

formula κ = |T′|/|r′| = 3
√
2

10
/10 = 3

√
2

100
.

Method 2: If I had not done the calculations for (c), I could still use
the formula κ = |r′ × r′′|/|r′|3. It’s pretty easy if you’ve done (a). First,
the cross product:

r′(t)× r′′(t) =

∣∣∣∣∣∣
i j k

1 3
√

2 t 9t2

0 3
√

2 18t

∣∣∣∣∣∣ = 27
√

2 t2i− 18tj + 3
√

2k = 3(9
√

2 t2i− 6tj +
√

2k)

because r′′(t) = 〈0, 3
√

2, 18t〉. Thus, at t = 1,

κ =
|r′ × r′′|
|r′|3

=
3
√

162 + 36 + 2

103
=

3
√

200

1000
=

3
√

2

100
.

(This is the same answer as from Method 1, so I’m sure it’s correct.)
I gave 2 points for knowing either of the formulas for κ. The other 8

points are for doing the calculations.

6. [Points: 1/2] You can write your answer on the test paper.
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