1. [Points: 1/2] You can write your answer on the test paper.
2. [Points: $10+10+5]$ A surface has equation $f(x, y, z)=2$, where $f(x, y, z)=x^{3}+3 y^{2}-9 z^{2}$. Grading note: In (a, b) I gave 6 points for $\mathbf{r}^{\prime}(t)$ (which is needed for both parts), 7 points for the tangent plane, and 7 points for the directional derivative.
(a) Find an equation of the tangent plane to the surface at the point $(2,1,-1)$.

Solution: The first step is to find the gradient:

$$
\nabla f(x, y, z)=\left\langle 3 x^{2}, 6 y,-18 z\right\rangle
$$

Then evaluate it at the point $(2,1,-1): \nabla(2,1,-1)=\langle 12,6,18\rangle$. Then use this vector as the coefficients in the equation of a plane that contains the point $(2,1,-1)$:

$$
\langle 12,6,18\rangle \cdot\langle x, y, z\rangle=\langle 12,6,18\rangle \cdot\langle 2,1,-1\rangle,
$$

simplifying to

$$
12 x+6 y+18 z=12
$$

which you may further simplify to $2 x+y+3 z=2$.
Notice that the value $2=f(x, y, z)$ that determines this level surface has no role in the solution.

Notice that I do not use the general form $\nabla f(x, y, z)$ in writing the tangent plane equation. That can cause errors because the x, y, z in the gradient are completely different from the x, y, z in the tangent plane equation. I put in the numbers first, that is, $\nabla f(2,1,-1)$. If you want to see how this looks in general, the point where we get the tangent plane should be called $\left(x_{0}, y_{0}, z_{0}\right)$ and the gradient at that point is $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$; then the equation of the tangent plane is $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$. $\langle x, y, z\rangle=\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot\left\langle x_{0}, y_{0}, z_{0}\right\rangle$. All the subscripted quantities are supposed to be known values, while x, y, z are variables subject to this equation.
(b) Find the directional derivative of the function $f(x, y, z)$ at $(2,1,-1)$ in the direction of $\langle 1,1,-1\rangle$.

Solution: We need two things: the gradient at $(2,1,-1)$, which we already know, and the unit vector in the direciton of \mathbf{u}, which is $(1 / \sqrt{3})\langle 1,1,-1\rangle$. Thus, the directional derivative is

$$
\nabla(2,1,-1) \cdot \frac{1}{\sqrt{3}}\langle 1,1,-1\rangle=\frac{4}{\sqrt{3}} .
$$

(c) Find all points on the surface where the tangent plane is horizontal.

Solution: A horizontal tangent plane means the gradient is vertical, i.e., it has the form $\nabla f(x, y, z)=\langle 0,0, k\rangle$, where $k \neq 0$. Comparing to the gradient equation, that means $3 x^{2}=0$ and $6 y=0$, thus $x=y=0$. So, we need a point $(0,0, z)$ on the surface. It satisfies the equation $0^{3}+3 \cdot 0^{2}-9 z^{2}=2$, in other words, $z^{2}=-2 / 9$. But that's impossible. So the answer is: There are no such points!
3. [Points: 19] Let $f(x, y)=x^{2}-x y+2 y^{4}$. Find all local minima and maxima of $f(x, y)$ in the $x y$-plane, both the points and their function values.

Solution: First step: The critical points are where the gradient $=\mathbf{0}$. The gradient is $\nabla f(x, y)=\left\langle 2 x-y,-x+8 y^{3}\right\rangle$. (Remember, we're in 2 dimensions.) Therefore, $y=2 x$ and $x=8 y^{3}$. You eliminate one of these variables, getting (for instance) $x=64 x^{3}$. Then factor: $64 x^{3}-x=0$ (Never divide by $x!$), so $x\left(64 x^{2}-1\right)=0$, so $x=0$ or $x= \pm 1 / 8$. Since $y=2 x$, the critical points are $(0,0),(1 / 8,1 / 4)$, and $(-1 / 8,-1 / 4)$.

Now test the critical points using the second-partials determinant.

$$
\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
2 & -1 \\
-1 & 24 y^{2}
\end{array}\right|=48 y^{2}-1
$$

(Be careful to do the second partials correctly. Partials are tricky when you're in a hurry.) Also, keep $f_{x x}=2$ in mind. Now here are the results for the three critical points:

$$
\begin{array}{ccccc}
\text { Point } & D & f_{x x} & \text { Type } & \text { Function Value } \\
(0,0) & -1<0 & & \text { Saddle point } & \text { not required } \\
\left(\frac{1}{8}, \frac{1}{4}\right) & 48\left(\frac{1}{4}\right)^{2}-1=2>0 & 2>0 & \text { Local min. } & -\frac{1}{128} \\
\left(-\frac{1}{8},-\frac{1}{4}\right) & 48\left(-\frac{1}{4}\right)^{2}-1=2>0 & 2>0 & \text { Local min. } & -\frac{1}{128}
\end{array}
$$

Addendum: You can prove by algebra that this function has absolute minima (they are the local minima) and no absolute maximum, but that isn't required.
4. [Points: 10] Evaluate the integral $\iint_{D} x^{2} \sin y d A$, where D is the region bounded by $x=0, y=3 \pi$, and $x=2 y$.

Solution: You should draw the region; though it isn't required, it makes the setup safer. However, I don't have good computer drawing facilities so I'm omitting that. Description: It's a triangle with vertices at $(0,0),(0,3 \pi)$, and $(6 \pi, 3 \pi)$. The left side is $x=0$, the top is $y=3 \pi$, and the bottom right is $x=2 y$, or $y=\frac{1}{2} x$ if you prefer.

Method 1: Put the y-integral inside: $\iint_{D} x^{2} \sin y d A=\int_{0}^{6 \pi} \int_{\frac{1}{2} x}^{3 \pi} x^{2} \sin y d y d x$. We get the limits of integration from the outside in: in D, the lowest value of x is 0 and the highest is 6π. These limits cannot depend on y because y will disappear in computing the inner integral. Having set up the limits for x, we have to find the range of y for each value of x in the interval $[0,6 \pi]$. A value of x gives a vertical line. That line intersects D in an interval. The low end of the interval is at the lower boundary of D, i.e., $y=\frac{1}{2} x$. The high end of the interval is at the top of D, i.e., $y=3 \pi$. Those are the lower and upper limits of integration for y (in the inner integral).

Method 2: Put the x-integral inside: $\iint_{D} x^{2} \sin y d A=\int_{0}^{3 \pi} \int_{0}^{2 y} x^{2} \sin y d x d y$. From the outside in: in D, the lowest value of y is 0 and the highest is 3π. These limits cannot depend on x because x will disappear in computing the inner integral. Now we have to find the range of x for each value of y in the interval $[0,3 \pi]$. A value of y gives a horizontal line. That line intersects D in an interval. The left end of the interval is at $x=0$. The right end of the interval
is at $x=2 y$. Those are the lower and upper limits of integration for x (in the inner integral).

I will now do the inner integration in Method 1: $\int_{0}^{6 \pi} \int_{\frac{1}{2} x}^{3 \pi} x^{2} \sin y d y d x=$ $\int_{0}^{6 \pi}\left[x^{2}(-\cos y)\right]_{y=\frac{1}{2} x}^{3 \pi} d x=\int_{0}^{6 \pi} x^{2}\left[-\cos 3 \pi+\cos \frac{1}{2} x\right] d x=\int_{0}^{6 \pi} x^{2}\left[1+\cos \frac{1}{2} x\right] d x$. The main point is to remember that, while you integrate with respect to y, x is like a constant. Don't get confused by its appearing to be a letter (of course it is a letter, but it doesn't vary while you integrate). (Method 2's inner integral is also simple.)

I gave 6 points for correctly setting up an iterated integral. Then 2 points for the inner integration. What remains is the outer integration; since that requires integration by parts (twice in both methods) and is not important for this course, I gave only 2 points for doing it, and I didn't expect it when setting the grading guidelines.
5. [Points: $15+10+10+10]$ A space curve is given by the formula $\mathbf{r}(t)=\left\langle t, \frac{3}{\sqrt{2}} t^{2}, 3 t^{3}\right\rangle$ for $t \geq 0$.
(a) Find the arc length function $s(t)$ measured from $t=0$.

Solution: The arc length function is $s(t)=\int_{0}^{t}\left|\mathbf{r}^{\prime}(t)\right| d t$. So we have to compute $\left|\mathbf{r}^{\prime}(t)\right|$ first. $\mathbf{r}^{\prime}(t)=\left\langle 1,3 \sqrt{2} t, 9 t^{2}\right\rangle$, so

$$
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{1^{2}+(3 \sqrt{2} t)^{2}+\left(9 t^{2}\right)^{2}}=\sqrt{1+18 t^{2}+81 t^{4}}=\sqrt{\left(1+9 t^{2}\right)^{2}}=1+9 t^{2}
$$

It's essential to see that you can simplify the square root; otherwise integrating is long and complicated. Now the integral is easy:

$$
s(t)=\int_{0}^{t} 1+9 t^{2} d t=t+3 t^{3}
$$

That's the answer to (a).
Note that the $\left|\mathbf{r}^{\prime}(t)\right|$ in the integral has to be the function, not the value at $t=0$ or 1 , and I did not ask for the arc length from $t=0$ to a specific number like $t=1$. Also, arc length (being a length) is not a vector.
(b) Find the unit tangent vector $\mathbf{T}(t)$ at the point where $t=1$.

Solution: Using the definition,

$$
\mathbf{T}(t)=\frac{1}{\left|\mathbf{r}^{\prime}\right|} \mathbf{r}^{\prime}=\frac{1}{1+9 t^{2}}\left\langle 1,3 \sqrt{2} t, 9 t^{2}\right\rangle
$$

Substituting $t=1$, we get

$$
\mathbf{T}(1)=\frac{1}{10}\langle 1,3 \sqrt{2}, 9\rangle
$$

(c) Find the normal vector \mathbf{N} at the same point.

Solution: The definition says that \mathbf{N} is the unit vector in the direction of $\mathbf{T}^{\prime}(t)$, i.e., $\mathbf{N}(t)=\mathbf{T}^{\prime}(t) /\left|\mathbf{T}^{\prime}(t)\right|$. You cannot differentiate $\mathbf{T}(1)$; you must use a general formula for $\mathbf{T}(t)$. Fortunately, I have that in (b). I use the
quotient formula for the derivative, with the result that

$$
\begin{aligned}
\mathbf{T}^{\prime}(t) & =\frac{1}{\left(1+9 t^{2}\right)^{2}}\left[\left(1+9 t^{2}\right)\langle 0,3 \sqrt{2}, 18 t\rangle-18 t\left\langle 1,3 \sqrt{2} t, 9 t^{2}\right\rangle\right] \\
& =\frac{1}{\left(1+9 t^{2}\right)^{2}}\left[\left\langle 0,3 \sqrt{2}+27 \sqrt{2} t^{2}, 18 t+162 t^{3}\right\rangle-\left\langle 18 t, 54 \sqrt{2} t^{2}, 162 t^{3}\right\rangle\right] \\
& =\frac{1}{\left(1+9 t^{2}\right)^{2}}\left\langle-18 t, 3 \sqrt{2}-27 \sqrt{2} t^{2}, 18 t\right\rangle
\end{aligned}
$$

Therefore,

$$
\mathbf{T}^{\prime}(1)=\frac{1}{100}\langle 18,-24 \sqrt{2}, 18\rangle=\frac{6}{100}\langle 3,-4 \sqrt{2}, 3\rangle
$$

and

$$
\left|\mathbf{T}^{\prime}(1)\right|=\frac{6}{100} \sqrt{3^{2}+4^{2} \cdot 2+3^{2}}=\frac{3 \sqrt{2}}{10}
$$

Finally, we can write that

$$
\mathbf{N}(1)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}=\frac{\sqrt{2}}{10}\langle 3,-4 \sqrt{2}, 3\rangle
$$

I didn't expect people to do all this. I did expect A students, but not C students, to know that $\mathbf{N}=\mathbf{T}^{\prime} /\left|\mathbf{T}^{\prime}\right|$, but that was just for 2 points.
(d) What is the curvature of this curve at $t=1$? Remember to simplify your answer as far as you can.

Solution:
Method 1: After doing all that calculation for (c) it's easy to use the formula $\kappa=\left|\mathbf{T}^{\prime}\right| /\left|\mathbf{r}^{\prime}\right|=\frac{3 \sqrt{2}}{10} / 10=\frac{3 \sqrt{2}}{100}$.

Method 2: If I had not done the calculations for (c), I could still use the formula $\kappa=\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right| /\left|\mathbf{r}^{\prime}\right|^{3}$. It's pretty easy if you've done (a). First, the cross product:

$$
\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 3 \sqrt{2} t & 9 t^{2} \\
0 & 3 \sqrt{2} & 18 t
\end{array}\right|=27 \sqrt{2} t^{2} \mathbf{i}-18 t \mathbf{j}+3 \sqrt{2} \mathbf{k}=3\left(9 \sqrt{2} t^{2} \mathbf{i}-6 t \mathbf{j}+\sqrt{2} \mathbf{k}\right)
$$

because $\mathbf{r}^{\prime \prime}(t)=\langle 0,3 \sqrt{2}, 18 t\rangle$. Thus, at $t=1$,

$$
\kappa=\frac{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|}{\left|\mathbf{r}^{\prime}\right|^{3}}=\frac{3 \sqrt{162+36+2}}{10^{3}}=\frac{3 \sqrt{200}}{1000}=\frac{3 \sqrt{2}}{100} .
$$

(This is the same answer as from Method 1, so I'm sure it's correct.)
I gave 2 points for knowing either of the formulas for κ. The other 8 points are for doing the calculations.
6. [Points: 1/2] You can write your answer on the test paper.

