LIST OF QUIZZES IN MATH 323-09

Hoping I didn't forget any. This mainly includes quizzes that were collected.

- Quiz 1. (M 2/1) Find a vector perpendicular to the plane through P(4, 1, 6), Q(4, -2, -1), and R(-1, 1, 1).
- Quiz. (W 2/10?) (Not collected.) Let $\mathbf{r}(t) = \langle t^3, \ln(3-t), \sqrt{t} \rangle$. (a) Find the domain of \mathbf{r} . (b) Find a tangent vector at t = 2.
- Quiz 2. (F 2/26) Let $f(x, y) = g(\sin(x+y), e^{xy})$, where g(u, v) satisfies $\frac{\partial g}{\partial u} = 3$ and $\frac{\partial g}{\partial v} = 19$. Find $\frac{\partial f}{\partial x}(0, 0)$ and $\frac{\partial f}{\partial y}(0, 0)$.
- Quiz 3. (F 4/15) Let $\mathbf{F}(x, y, z) = \langle y^2, 2xy + e^{3z}, 3ye^{3z} \rangle$. Find f(x, y, z) such that $\nabla f = \mathbf{F}$.
- Quiz 4. (W 4/20) Use Green's Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F} = x^2 y^2 \mathbf{i} + xy^3 \mathbf{j}$ and C is the boundary curve of the triangle whose vertices are (1, 0), (0, 2), (-1, 0), traversed counterclockwise from (1, 0) back to (1, 0).
- Quiz 5. (Th 4/28) (Trigonometric Values) Fill in this table.

θ	$\sin \theta$	$\cos heta$	an heta
0			
$\pi/4$			
$5\pi/6$			
$-3\pi/4$			
$-82\pi/3$			
$\pi/4$ $5\pi/6$ $-3\pi/4$ $-82\pi/3$ 11π			

- Quiz. (Th 4/28) (Not collected.) Find $\frac{\partial}{\partial x} x \cos xy$. (One purpose was to make sure you know $\cos xy$ means the cosine of xy, not y times the cosine of x.)
- Quiz 6. (Th 4/28) Use Green's Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F} = \langle y \cos y, x \sin y \rangle$ and C is $(x - 3)^2 + (y + 4)^2 = 4$, oriented clockwise. (An important hint was to graph the curve first!)