Solution to Problem D1

Problem Statement.

Suppose the average degree of a connected graph G is >2. [The original question should have said G is connected.]
(a) Prove that G contains at least 2 cycles.
(b) Prove that it is possible for G to have exactly 2 cycles.

Solution to (a).

The first key step is that the average degree $=\frac{2 q}{p}$. The reason is that the average degree is the total degree divided by the number of vertices. The total degree is $2 q$ (the first theorem in the book), thus the average degree is $2 q / p$. That means what we know from the assumption can be expressed as: $2 q / p>2$, or

$$
q>p
$$

Next step: Recognize that a connected graph that has no cycles, i.e., a tree, has $q=p-1$. (Another main theorem.) Therefore, G is not a tree; as it is connected, it has a cycle. Let C_{1} be a cycle in G. Now we remove one edge e_{1} from C_{1}. That gives a graph $G_{2}:=G-e_{1}$, in which C_{1} does not exist (we deleted one of its edges).

But (the third step) we know how many edges G_{2} has. In fact, q_{1} (the number of edges in G_{2}) is $q_{2}=q-1$. Therefore, $q_{2} \geq p$. Also, G_{2} is connected. (We had a theorem that deleting an edge from a cycle in a connected graph leaves a graph that is still connected. That's what Problem C3 means! Do you see how?) Consequently, G_{2} is either a tree-but it has too many edges since $q_{2}>p-1$, so that's impossible - or it contains a cycle. Let C_{2} be a cycle in G_{2}. Then G contains the cycles C_{1} and C_{2}. That nearly solves the problem.

There's one little detail to make the solution complete. We should explain why C_{1} and C_{2} are not the same. The reason is that $e_{1} \in C_{1}$ while $e_{1} \notin C_{1}$ because $C_{2} \subseteq G_{2}=G-e_{1}$.

Solution to (b).

Here is an example: Two cycles, with one common vertex.
Another: Two disjoint cycles, with a path connecting a vertex in one of them to a vertex in the other one.

In both cases, all vertices have degree 2 except for one or two that have higher degree. Thus, the average degree is >2. Obviously, each graph has exactly two cycles.

Problem D1(c). Prove there are no other (connected) examples. (I'm confident this is true but I didn't try to find a proof. That's for you.)

