Problem Statement.

Suppose the average degree of a connected graph G is > 2. [The original question should have said G is connected.]

(a) Prove that G contains at least 2 cycles.

(b) Prove that it is possible for G to have exactly 2 cycles.

Solution to (a).

The first key step is that the average degree $=\frac{2q}{p}$. The reason is that the average degree is the total degree divided by the number of vertices. The total degree is 2q (the first theorem in the book), thus the average degree is 2q/p. That means what we know from the assumption can be expressed as: 2q/p > 2, or

q > p.

Next step: Recognize that a connected graph that has no cycles, i.e., a tree, has q = p - 1. (Another main theorem.) Therefore, G is not a tree; as it is connected, it has a cycle. Let C_1 be a cycle in G. Now we remove one edge e_1 from C_1 . That gives a graph $G_2 := G - e_1$, in which C_1 does not exist (we deleted one of its edges).

But (the third step) we know how many edges G_2 has. In fact, q_1 (the number of edges in G_2) is $q_2 = q - 1$. Therefore, $q_2 \ge p$. Also, G_2 is connected. (We had a theorem that deleting an edge from a cycle in a connected graph leaves a graph that is still connected. That's what Problem C3 means! Do you see how?) Consequently, G_2 is either a tree—but it has too many edges since $q_2 > p - 1$, so that's impossible—or it contains a cycle. Let C_2 be a cycle in G_2 . Then G contains the cycles C_1 and C_2 . That nearly solves the problem.

There's one little detail to make the solution complete. We should explain why C_1 and C_2 are not the same. The reason is that $e_1 \in C_1$ while $e_1 \notin C_1$ because $C_2 \subseteq G_2 = G - e_1$.

Solution to (b).

Here is an example: Two cycles, with one common vertex.

Another: Two disjoint cycles, with a path connecting a vertex in one of them to a vertex in the other one.

In both cases, all vertices have degree 2 except for one or two that have higher degree. Thus, the average degree is > 2. Obviously, each graph has exactly two cycles.

Problem D1(c). Prove there are no other (connected) examples. (I'm confident this is true but I didn't try to find a proof. That's for you.)