Math 381 2011/5/3 TEST III SOLUTIONS AND EXPLANATIONS 5/10

e Show all your work for each problem; show enough work to fully justify your answer.
e Work on the test paper when you can save time by not redrawing a diagram.

e Start each numbered problem on a fresh page.

e Hand in both this paper and test booklet.

e Do not use the Four-Color Theorem to solve any problems.

1. [Points: 1] Did you follow all the directions?

Solution: Full credit if and only if you did follow the directions. I don’t actually care
whether your answer is correct!

2. [Points: 10] Find the line graph of E.

w

Solution: This is supposed to test whether you know what a line graph is. You do
have to be careful.
Don’t confuse line graph with dual graph. They are completely different!

3. [Points: 5] Find a planar graph G whose line graph L(G) is nonplanar.

Solution: = The simplest example is G = K5, which is obviously planar, since
L(K,5) = K5, which I assume everyone knows is nonplanar. Other nice or not-so-nice
examples are possible, such as Wy (not so obvious) and W,, for n > 5 (whose line graph
contains K5 because there’s a vertex of degree > 5). The important things in this problem
are that you know how to construct L(G) and that you prove your example is correct (if
it isn’t as obvious as G = K 5).

4. [Points: 10]
(a) Find a largest graph with 8 vertices and diameter 5.
(b) How many edges are there?

Solution: This requires thinking about how to get diameter 5 (you start with Ps,
which has 6 [not 5] vertices) and keep it as you add vertices (2 more, z and y). You
can make an extra vertex x adjacent to at most 3 consecutive vertices of the P5, because
if x is adjacent to vertices at distance 3 or more along the path, then you shorten the
distance between the endpoints. A good proof notices that. Then, if you choose the right
3 consecutive vertices for x and y you can add the edge zy for 12 edges. The careful
construction proves this is the maximum. Your graph proves it is attainable.

(Some people didn’t say anything about consecutive vertices. That was acceptable,

though not quite as good, if you explained that having x adjacent to more than 3 vertices
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on Ps shortens the diameter, if you deduced there could be no more than 12 edges, and if
you had the example to prove 12 edges are possible.)

Example [4 pts.], proof [5 pts.], checking the number of edges [1 pt.]. Your graph must
be reasonable to get credit. That means you had to have some idea of what you were
doing and not just be guessing.

A minor deduction for missing the twelfth edge.

. [Points: 10]
(a) What is the largest graph with 4n + 2 vertices and no K subgraph?
(b) How many edges does it have?

Solution: This is a straightforward application of Turan’s Theorem (you should get
a 4-partite graph [5 pts.]), together with being able to figure out that the Turan graph
for p=4n+21is K, 1n11nn [3 Pts.] and that it has 6n? 4+ 6n + 1 edges [2 pts.].

. [Points: 10] Find all automorphisms of the graph X shown here.

Solution: An automorphism is a function f :V — V., not a description. Thus, you
should give the specific function for each automorphism, as a function like f(y) =y etc.,
or as in y — y etc., or in a table of values of the various automorphisms. There are 6
automorphisms but just the number is not a complete answer; you have to state (“find”)
the automorphisms [5 pts.].

There should be a proof [5 pts.]. If you only gave an intuitive description of the
automorphisms, you won’t have a proof. A complete proof notes that an automorphism
must preserve degrees, therefore f(y) = y. After that, there are various ways to go. In
fact, you could start by examining the degree-1 vertices, or the degree-2 vertices, and get
to y later.

. [Points: 10] Prove that every planar graph can be colored in 6 colors. (This is vertex
coloring.)

Solution: This was supposed to be a give-away problem! It appears that people who
skipped this in the homework should have asked about it in class—but no one did.

The key is that any planar graph has a vertex of degree 5 or less. You didn’t need to
prove that; it’s a separate theorem.

You use induction on the order of the planar graph. You find a vertex x in G with
d(xz) < 5, color G \ = in 6 colors (justified by induction), and extend the coloring to x
(possible due to d(x)).

Classic False Proof. If a planar graph G could not be colored in 4 (oops, I mean

6) colors it would have a subgraph isomorphic to K5 (I mean K7), but K5 is nonplanar
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(therefore, so is K7) so G cannot contain it as a subgraph. Therefore every planar graph
is colorable in 4 (I mean 6) colors.
If this worked we wouldn’t be still talking about the Four Color Theorem. Where is
the flaw? (Every graph theorist gets this “proof” in the mail once in a while.)
Unreasonable proof. Don’t use the 5 Color Theorem (5CT) to prove the 6CT, unless
you prove the 5CT.

. [Points: 10]

(a) Use Euler’s Polyhedral Formula to prove that a planar graph satisfies ¢ < 3(p — 2) if
p =3

(b) Is this inequality satisfied by every planar graph with p = 27

Solution: (a) [9 pts.] There are a lot of little steps worth 1 or 2 points each. It’s not
easy to remember all of them but some are important.

Know that Euler’s formula says p — ¢ + r = 2 for a plane drawing of any connected
graph. It doesn’t say that for a disconnected plane drawing. [2 pts. for Euler, stated
correctly.]

If your proof is very good, you are showing where the assumption p > 3 is used (not
easy!). [1 pt.]

The book has a proof starting with maximal planar graphs; you can look it up. Here
is a different proof, which starts with connected planar graphs.

Step 1 [8 pts.]: Assume G is a connected planar graph with p > 3. Draw it (without
crossings).

Each region A has at least 3 edges on its boundary (counting both sides if the edge
has A on both sides), because otherwise G would have a loop or double edge (but G is a
graph), or it would have one edge on its boundary twice and that would be the only edge
(so G = K, contradicting p > 3).

Therefore,

sum of boundary lengths of all regions > sum of 3 for all regions = 3r.
Also

sum of boundary lengths of all regions = 2gq,
as each edge counts twice (once for each side). Therefore, 2¢ > 3r, so r < %q. (You should
explain how you get 2¢ < 3r, or 2¢ = 3r for a maximal planar graph.)

Now we use this to eliminate r from Euler’s formula:

2 1
2=p—qtrsp-q+tze=p—3¢
Solving for ¢, we get ¢ < 3(p — 2).

Step 2 [1 pt.]: Assume G is a disconnected planar graph with p > 3. Add just enough
edges to connect GG, forming G’. This new graph is still planar. (You could add the new
edges in a plane drawing of G.) Now G’ is connected and planar with p’ = p > 3. Thus,
q¢ < 3(p' —2), which implies ¢ < ¢’ < 3(p — 2).

Solution: (b) [1 pt.] No. K, fails.
. [Points: 15]

(a) Is the graph H planar?
(b) Find its crossing number.



Solution: (a) [10 pts.] There are several subgraphs that are isomorphic to subdi-
visions of K33. One (at least) is K33 without subdivision. Finding any of these proves
nonplanarity.

Solution: (b) [5 pts.] One can redraw the graph with 2 crossings. Thus, cr(H) > 1
and cr(H) < 2. You can’t decide between these values because there is an edge, ae, such
that H \ ae is planar. Therefore, you can’t use any method we know to prove the crossing
number is not 1.

A good answer is “1 or 2”. If you tried the edge-deletion method correctly, that’s even
better. However, there’s a trap: If you find H \ zy is nonplanar for one particular edge
xy, nothing follows about cr(H). [—1 pt. if you claimed to prove cr(H) > 1 that way.]
If it were nonplanar for every edge xy you could conclude cr(H) > 1, but unfortunately,
H \ ae is planar, so that method can’t solve the problem. Crossing number is hard!

In case you're interested, here is how to prove cr(H) = 2. I did not expect you to do it
on the test!

Proof 1. (Advanced!) Suppose the crossing number were 1. Then there would be an edge
whose deletion makes H planar. Let’s check the edges. We can do several at a
time by deleting vertices. Deleting any one of b, g, h, j gives a nonplanar graph.
Therefore, deleting any one edge incident with b, g, h, or j gives a nonplanar
graph. The only other edges are ae and cd. If cr(H) = 1, there must be a
drawing where ae and cd are the crossing edges. As I said previously, H \ ae is
planar. But (it can be proved) there is only one way to draw H \ e in the plane
with no crossings (except that you can choose which region is the outer region).
If you draw H \ e without crossings, you have to put e into one of the regions.
No matter which region you pick, you’ll need two crossings to connect e to all
its adjacent vertices (a, g, and j).

Proof 2. (Not advanced, but complicated.) This proof is based on ideas of Rick Behr.
Notice the disjoint cycles ejge and abedha (reading clockwise), each of which
contains two neighbors of f. Consider how to draw H. If the two cycles cross
they must cross twice (at least) so we can’t get only 1 crossing. If one is inside
the other, and we put f inside both, or outside both, the edges from f to its
neighbors will create 2 crossings (at least). Therefore f has to be in the annulus
(ring) between the cycles. We can put ejge inside abedha (because if we do

the reverse we can simply turn the diagram inside out). Now we have edges
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10.

11.

ae, jc, gc, gd across the annulus, cutting it into four regions. No matter which
one we put f in, it has at least two neighbors outside its region, which will form
at least 2 crossings. But wait! what if we flip ejge over, making egje (still inside
abcdha)? The edges ae, jc, gd will then have at least one crossing, and it’s easy to
check that no matter where we put f one or more of its edges will cross another
edge. Therefore, no drawing of H can have fewer than two crossings.

But wait! What if we gave the cycle abedha a twist, so it crosses itself once? We
have to show there must be at least one more crossing. I leave that to you (or
someone else).

[Points: 5] Find the dual graph of the plane graph N.
b

N a

f

Solution: I want to see that you know what a planar dual graph is. It’s not necessarily
a “graph”; in this case it’s a pseudograph. Don’t forget the outer region, which gives one
vertex of the dual and has 3 edges to the region bounded by abjeda.

[Points: 7+7]

(a) A plane drawing of a connected cubic graph G; has 40 regions. How many vertices
does G; have?

(b) A plane drawing of a maximal planar graph G has r = 44 regions. What is the
average degree of G5?

Solution: (a) As G; is cubic, we can calculate ¢ = 3p. As G; is connected, we can
apply Euler’s formula: 2=p—q+r=p— %p 440, so p=2-38 = 76.

Key points: Euler’s formula. Relation between p and ¢ for a cubic graph (which you
can calculate quickly if you're not sure you remember).

Solution: (b) Since the graph is maximal planar, every region is a triangle; so 3r = 2q.
That implies ¢ = 66. Since a maximal planar graph must be connected, Euler’s formula
applies; therefore 2 = p—q+r = p—66+44, so p = 24. The average degree is 2¢q/p = 11/2.

Another proof: Use g = 3(p—2), true for a maximal planar graph, together with Euler’s
formula, to get ¢ and p.

Key points: A maximal planar graph is connected. Stating the reason Euler’s for-
mula applies to a maximal planar graph. Every region is a triangle (N.B. that’s not the
definition!). Formula for average degree.



