
Automorphisms of Graphs
Math 381 — Spring 2011

An automorphism of a graph is an isomorphism with itself. That means it is a bijection,
α : V (G)→ V (G), such that

α(u)α(v) is an edge if and only if uv is an edge.

We say α preserves edges and non-edges, or as the book says, it preserves adjacency and
nonadjacency. (If you took combinatorics, you’ll remember that a bijection from a set to
itself is called a permutation of that set; so an automorphism is a permutation of the vertex
set, but generally speaking not every permutation will be an automorphism.)

Every graph has the trivial automorphism id : V → V defined by id(v) = v. (In other
words, it does nothing.) Most graphs (whatever that means exactly, since there are infinitely
many finite graphs!) have no other automorphisms, but many interesting graphs have many
automorphisms. I discussed the Petersen graph P in class. It has, for its size, a huge number
of automorphisms.

We write AutG for the set of all automorphisms of G. Thus, id ∈ AutG for every graph.

Example Aut.1. Here is a graph N that has no nontrivial automorphisms.
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Figure Aut.1. A graph N for which |Aut(N)| = 1.

Let’s prove that AutN = {id}, that is, N has no nontrivial automorphisms. Suppose α
is an automorphism. Like any isomorphism, α(v0) must have the same degree as v0, for any
vertex v0. So, in particular, α(u) = u or y. The neighbor of u is v, so α(v) must be a neighbor
of α(u). That means α(v) = z if α(u) = y, but then v and α(v) don’t have the same degree,
which is impossible for an automorphism. Therefore, α(u) = u; that implies α(v) = v and
also α(y) = y since α(y) cannot be the same as α(u) (remember that an automorphism is
a bijection). Now α(w) has to be a neighbor of α(v) = v and cannot be u, so α(w) = w.
The only remaining vertex is x, and α(x) can’t be anything already in the image of α, which
leaves only x as a possible value for α(x). We’ve proved that α(v0) = v0 for every vertex, so
α = id. Therefore, the only automorphism of N is id.

Example Aut.2. C4 is the opposite: it has quite a few automorphisms, in fact 8. Number
the vertices v1, v2, v3, v4 in order around C4. (See any graph in Figure Aut.2.) It’s convenient
to define Z4 := {1, 2, 3, 4}.

Let’s examine the possible automorphisms α of C4. First of all, α(v1) = vi for some i ∈ Z4.
Then α(v2) has to be a neighbor of vi, so it is either vi+1 or vi−1. (We take the subscripts
modulo 4, which means that if i + 1 > 4, we subtract 4 so it is in Z4, and if i − 1 < 1, we
add 4 to put it in Z4.) Now α(v4) has to be the neighbor of vi that isn’t α(v2), so it is vi−1
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or vi+1, whichever one is not α(v2). Finally, vi+2 is the only remaining vertex not yet in the
image of α, so it must be equal to α(v2). We can display α in a table:

v = v1 v2 v3 v4

α(v) = vi vi±1 vi∓1 vi+2

(In reading the table, note that i∓ 1 is the opposite of i± 1, that is, ∓ = − if ± = + and
= + if ± = −. Also, since we take numbers modulo 4, i+ 2 and i− 2 give the same result,
and i∓ 1 is the same as i± 3. This is called “modular arithmetic”.)

You’ll notice that we had 4 choices for i, and then we had to choose either i+ 1 or i− 1,
which is 2 further choices. That gives us 4× 2 = 8 ways to choose an automorphism of C4;
thus, |Aut(C4)| = 8, as claimed.

An example is α in Figure Aut.2, where i = 3 and ± = + (that is, i ± 1 = i + 1). β is
another example; there i = 1 and ± = −.
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Figure Aut.2. C4 and automorphisms α, β, and their product βα.

We’ll discuss the product βα in Example Aut.3.

The simplest examples are Kn and K̄n. Every permutation of the vertex set is an auto-
morphism.

Exercise Aut.1. Prove that AutG consists of all permutations of V if and only if G is
complete or has no edges.

Exercise Aut.2. Find AutH; that is, find all automorphisms of H in Figure Aut.3..
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Figure Aut.3. A cute graph H.

As an automorphism is a function, two automorphisms can be composed. Suppose α
and β are automorphisms of G. Then they are both bijections V → V . As you know, the
composition of two bijections is a bijection. Therefore, βα (the rule is: do α first, then β;
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the technical definition is βα(v) = β(α(v))) is a bijection V → V . But that doesn’t mean it
is an automorphism. So, there’s a question: Is it?

Similarly, a permutation of V , α, has an inverse function α−1 (because it is a bijection).
Is α−1 an automorphism?

Theorem Aut.1. The composition of two automorphisms of G is an automorphism of G.
The inverse of an automorphism of G is also an automorphism.

Proof. I will prove the first statement. The second is an exercise.
The definition of an automorphism of G is that it is a bijection f : V → V such that

f(u)f(v) ∈ E ⇐⇒ uv ∈ E. We want to prove this for f = βα. We know (from Math 330
or equivalent) that it’s a bijection. We need to know it preserves edges and non-edges.

We know that’s true for α and for β. Now, let’s write the proof using what we know.
We know α is an automorphism; that means

uv ∈ E ⇐⇒ α(u)α(v) ∈ E.
We also know β is an automorphism; that means

u′v′ ∈ E ⇐⇒ β(u′)β(v′) ∈ E.
In particular, that holds true if we set u′ = α(u) and v′ = α(v); so we can write

α(u)α(v) ∈ E ⇐⇒ β(α(u))β(α(v)) ∈ E.
Now we combine both if-and-only-ifs:

uv ∈ E ⇐⇒ α(u)α(v) ∈ E ⇐⇒ β(α(u))β(α(v)) ∈ E.
The conclusion is that

uv ∈ E ⇐⇒ βα(u)βα(v) ∈ E.
This is the definition of βα’s being an automorphism. �

Exercise Aut.3. Prove the second statement of Theorem Aut.1.

This means we can “multiply” two automorphisms of G, and we can invert an auto-
morphism. A system in which you can “multiply” any two elements (and they satisfy the
associative law) and invert any element is called a group. (Students of modern algebra will
know this.) Thus, Theorem Aut.1 is saying that AutG is a group. It is called the au-
tomorphism group of G. There has been and still is a great deal of research done about
it.

Example Aut.3. Figure Aut.2 shows two automorphisms, α and β, and the product βα.
Here is a table showing how to compute the product:

v = v1 v2 v3 v4

α(v) = v3 v4 v1 v2

β(v) = v1 v4 v3 v2

β(α(v)) = v3 v2 v1 v4

Exercise Aut.4. The octahedral graph O (Figure Aut.4) has an automorphism α such
that α(vi) = vi+1 in the numbering of the figure,1 and another automorphism β such that

1If you get an index i+1 > 6, reduce modulo 6; that is, subtract 6 so your number is in the range 1, . . . , 6.
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β(vi) = vi+3 for i = 1, 2, 3 and β(vi) = vi−3 for i = 4, 5, 6.2 Calculate the exact values of
αβ(vi) and α−1(vi) for i = 1, . . . , 6.
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Figure Aut.4. Octahedron graph.

Exercise Aut.5. (a) Find AutCn. That is, find all automorphisms of Cn. Warning: AutC3

is possibly misleading; it is not typical.
(b) Find Aut C̄n.

Exercise Aut.6. (a) Find AutPn, n ≥ 1.
(b) Find Aut P̄n.

Exercise Aut.7. (a) Find AutO.
(b) Find Aut Ō.

Exercise Aut.8. (a) Find AutKm,n.
(b) Find Aut K̄mn.

Exercise Aut.9. How are AutG and Aut Ḡ related?

The Petersen Graph. The Petersen graph P is a remarkable example because it has more
automorphisms, relative to its size, than almost any other graph. We can see why by looking
at a systematic construction of P . Let Z5 := {1, 2, 3, 4, 5} and let P2(Z5) be the set of all
unordered pairs of elements of Z5. Then V (P ) = {vij : {i, j} ∈ P2(Z5)}; in words, we label
the vertices of P by the unordered pairs of numbers from 1 to 5. We think of vji and vij as
identical; for instance, v12 and v21 are the same vertex Two vertices in P are adjacent if and
only if their labels are disjoint sets; formally, E(P ) = {vijvkl : {i, j} ∩ {k, l} = ∅}.
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Figure Aut.5. The Petersen graph with the 2-index vertex labelling.

2If you work modulo 6, then β(vi) = vi+3 for all i.
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If we permute the elements of Z5 we get a bijection V (P )→ V (P ). For instance, suppose
we have a permutation ζ of Z5 such that ζ(1) = 2, ζ(2) = 1, ζ(3) = 3, ζ(4) = 5, and
ζ(5) = 4. Then ζ gives us the automorphism α of the following table:

Vertex v v12 v13 v14 v15 v23 v24 v25 v34 v35 v45

α(v) v12 v23 v25 v24 v13 v15 v14 v35 v34 v45

Any permutation of Z5 gives an automorphism of P in the same way, and different per-
mutations give different automorphisms. (See Exercise Aut.11; it’s fairly easy.) Since there
are 5! = 120 permutations of Z5, there are at least 120 automorphisms of P . It’s possible to
prove there are no more than 120, but I’ll omit that. Summarizing:

|Aut(P )| = 120.

Exercise Aut.10. What does this description of P tell you about how it’s related to line
graphs?

Exercise Aut.11. This is about how the permutations of Z5 are related to the automor-
phisms of P .

(a) Prove that any permutation of Z5 gives an automorphism of P
(b) Prove that different permutations of Z5 give different automorphisms of P .
(c) (Optional.) Prove there are no other automorphisms of P . (Not easy, unless you know

some theory of permutation groups.)

Example Aut.4. Let’s try an example to illustrate the theorem of Exercise Aut.11(c). I’ll
produce an automorphism α of P by a simple redrawing of the usual picture, and deduce
the permutation of Z5 that gives that automorphism.
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Figure Aut.6. An automorphism of P produced by reversing the outer and
inner pentagons.

As you can see, just redrawing the inner (star) pentagon as an outer pentagon and the
outer as the inner pentagon makes a new picture that looks exactly like the original; thus,
it’s clearly an automorphism. Here is the automorphism as a bijection V → V :

Vertex v v12 v13 v14 v15 v23 v24 v25 v34 v35 v45

α(v) v35 v23 v34 v13 v25 v45 v15 v24 v12 v14
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What could be the permutation ζ of Z5 that gives the automorphism α? (Its existence
is guaranteed by Exercise Aut.11(c).) We track the subscripts. α(v12) = v35 means that
1, 2 become 3, 5; so either 1 → 3, 2 → 5 or 1 → 5, 2 → 3. We can’t tell which, yet, but
we’ll look at another subscript. Since α(v15) = v13, either 1 → 1, 5 → 3 or 1 → 3, 5 → 1.
Consistency requires that ζ take 1 → 3; therefore, 2 → 5 and 5 → 1. We don’t know what
ζ does with 3 or 4 yet, so we need to look at another vertex. Let’s try v23; as α(v23) = v25,
and as we already found that 2→ 5, ζ must carry 3→ 2. Then 4→ 4, since we can’t carry
4 to anything that’s already in the image of ζ. Summarizing ζ, it is

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
3 5 2 4 1
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