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Index-mapping

Definition

Let G be a simple graph without isolated vertices and let f be
a mapping from E(G) into positive integers. The index-mapping
of f is the mapping f ∗ from V (G) into positive integers defined
by

f ∗(v) =
∑

vu∈E(G)

f (vu) for every v ∈ V (G)
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Magic labelling

Definition

An injective mapping f from E(G) into positive integers is called
a magic labelling of G for an index λ if its index-mapping f ∗

satisfies
f ∗(v) = λ for all v ∈ V (G).
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Supermagic labelling

definition

A magic labelling f of G is called a supermagic labelling if the
set {f (e) : e ∈ E(G)} consists of consecutive positive integers.
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definition
A graph G is called supermagic (magic) whenever there exists
a supermagic (magic) labelling of G.
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History

Magic graphs

1963 – J. Sedláček: introduction of magic graphs
1978 – M. Doob: characterization of regular magic graphs
1983 – S. Jezný, M. Trenkler: characterization of all magic
graphs
1988 – R. H. Jeurissen: other characterization of magic
graphs
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History

Supermagic graphs

1966 – B. M. Stewart: introduction of supermagic graphs
1967 – B. M. Stewart: characterization of supermagic
complete graphs
2000 – J. I.: characterization of supermagic complete
multipartite graphs and supermagic cubes
2004 – J. I., Z. Lastivková, A. Semaničová:
characterization of supermagic line graphs of regular
bipartite graphs
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Sporadic constructions

Constructions used only for special graphs.

Theorem B. M. Stewart, 1967

The complete graph Kn is supermagic if and only if either n ≥ 6
and n 6≡ 0 (mod 4) or n = 2.

Theorem J. Sedláček, 1976

The Möbius ladder Mp is supermagic graph for every odd
integer p ≥ 3.
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Graphs with supermagic factors

Constructions used for graphs decomposable into edge disjoint
supermagic factors.

Theorem N. Hartsfield, G. Ringel, 1990

Let F1, F2, . . . , Fk be mutually edge-disjoint supermagic
(regular) factors of a graph G which form its decomposition.
Then G is supermagic.
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Copies of supermagic graphs

Constructions used for regular supermagic graphs.

Theorem J. I., 2000

Let G be a supermagic regular graph decomposable into k ≥ 2
edge-disjoint d-factors. Then it holds:

if k is even, then mG is supermagic for every positive
integer m;
if k is odd, then mG is supermagic for every odd positive
integer m.

Corollary J. I., Z. Lastivková, A. Semaničová, 2004

Let G be a bipartite d-regular graph, where d ≥ 3. Then the
line graph L(G) is supermagic.
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Graphs decomposable into 2-factors

Theorem N. Hartsfield, G. Ringel, 1990

Let G be a bipartite 4-regular graph decomposable into two
edge-disjoint Hamilton cycles. Then G is supermagic.

Theorem J. I., 2000

Let G be a bipartite 4-regular graph which can be decomposed
into pairwise edge-disjoint 4-cycles. Then G is supermagic.

Theorem J. I., 2000

Let G be a 3-regular graph containing a 1-factor. Then the line
graph of G is a supermagic graph.
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Graphs decomposable into Eulerian factors

Theorem J. I., 2007

Let G be a 4k-regular bipartite graph which can be
decomposed into two edge-disjoint connected 2k -factors. Then
G is a supermagic graph.

Corollary

Let G be a 4k-regular bipartite graph of order 2n. If
4k − 2 > n/2, then G is a supermagic graph.
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Graphs decomposable into Eulerian factors

Theorem J. I., 2007

Let G be a d-regular bipartite graph of order 2n such that one
of the following conditions is satisfied:

d ≡ 0 (mod 4) and d − 2 > n/2,
d ≡ 1 (mod 4), n ≡ 1 (mod 2), d − 11 > n/2 and
d ≥ (3n + 2)/4,
d ≡ 2 (mod 4), n ≡ 1 (mod 2) and d − 8 > n/2,
d ≡ 2 (mod 4), n ≡ 0 (mod 2), d − 8 > n/2 and
d ≥ (3n + 2)/4,
d ≡ 3 (mod 4), n ≡ 1 (mod 2), d − 5 > n/2 and
d ≥ (3n + 2)/4.

Then G is a supermagic graph.
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Double-consecutive labelling

Definition

Let U1, U2 be subsets of V (G) such that |U1| = |U2| = n,
U1 ∪ U2 = V (G) and U1 ∩ U2 = ∅. An injective mapping f from
E(G) into positive integers is called a double-consecutive
labelling (DC-labelling) with respect to (U1, U2) if its
index-mapping f ∗ satisfies

f ∗(U1) = f ∗(U2) = {a, a+1, . . . , a+n−1} for some integer a.
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DC-labellings
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DC-labellings of bipartite graphs

Lemma

Let G be a 1-regular bipartite graph of order 2n with parts U1
and U2. Then there is a DC-labelling f of G with respect to
(U1, U2).

Lemma

Let G be a connected 2-regular bipartite graph of order 2n with
parts U1 and U2. If n is an odd integer, then there is
a DC-labelling f of G with respect to (U1, U2).
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DC-labellings of disjoint union of two graphs

Lemma

Let G1 and G2 be disjoint 3-regular Hamiltonian bipartite graphs
each of order n = 4k , k ≥ 2. Then there exists a DC-labelling f
of G1 ∪G2 with respect to (V (G1), V (G2)).

Lemma

Let G1 and G2 be disjoint regular Hamiltonian graphs each of
odd order n and degree 4 (6). Then there exists a DC-labelling
f of G1 ∪G2 with respect to (V (G1), V (G2)).
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Extension of DC-labelling
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Extension of DC-labelling

Lemma

Let H be a balanced bipartite graph of order 2n with parts U1
and U2. Let F be a 2-factor of H and let g be a DC-labelling of
G = H − F with respect to (U1, U2). Then there exists a
DC-labeling f of H with respect to (U1, U2).

Lemma

Let H1 and H2 be disjoint graphs each of order n. Let F be
a 4-factor of H = H1 ∪ H2 and let g be a DC-labelling of
G = H − F with respect to (V (H1), V (H2)). Then there exists a
DC-labeling f of H with respect to (V (H1), V (H2)).
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The main idea of the construction
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The basic result

Theorem

Let G1, G2 be disjoint graphs each of order n and let G3 be
a balanced bipartite graph of order 2n with parts U1 and U2. Let
f be a DC-labelling of G1 ∪G2 with respect to (V (G1), V (G2))
and let g be a DC-labelling of G3 with respect to (U1, U2). If f
and g are complementary, then there exists a supermagic
graph G such that V (G) = U1 ∪ U2, G(U1) is isomorphic to G1,
G(U2) is isomorphic to G2 and G(U1, U2) is isomorphic to G3.
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Complements of bipartite graphs

Theorem

Let G be a d-regular bipartite graph of order 8k . The
complement of G is a supermagic graph if and only if d is
odd.
Let G be a d-regular bipartite graph of order 2n, where n is
odd and d is even. The complement of G is a supermagic
graph if and only if (n, d) 6= (3, 2).
Let G be a d-regular bipartite graph of order 2n. If 2d < n
and 5 ≤ n ≡ d ≡ 1 (mod 2), then the complement of G is
a supermagic graph.
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Joins of graphs

Theorem

Let G1 and G2 be disjoint d-regular Hamiltonian graphs of order
n. If d ≥ 4 is even and n is odd, then the join G1 ⊕G2 is
a supermagic graph.

Corollary

Let G1 and G2 be disjoint d-regular graphs of order n. If
2d ≥ n, 5 ≤ n ≡ d ≡ 1 (mod 2) and 4 ≤ d ≡ 0 (mod 2), then
the join G1 ⊕G2 is a supermagic graph.
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Non–regular supermagic graphs

Theorem

Let Gi , i ∈ {1, 2}, be a di -regular Hamiltonian graph of order n.
If 4 ≤ d1 ≡ 0 (mod 4), d1 = d2 + 2 and n is odd, then the join
G1 ⊕G2 is a supermagic graph.

Corollary

Let Gi , i ∈ {1, 2}, be a di -regular graph of odd order n. If
4 ≤ d1 ≡ 0 (mod 4), d1 = d2 + 2 and 2d2 ≥ n, then the join
G1 ⊕G2 is a supermagic graph.
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Thank you very much for your attention
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