

Introduction	History	Known constructions	New construction	Conclusion
Index-n	napping			

Definition

Let *G* be a simple graph without isolated vertices and let *f* be a mapping from E(G) into positive integers. The index-mapping of *f* is the mapping *f*^{*} from V(G) into positive integers defined by

$$f^*(v) = \sum_{vu \in E(G)} f(vu)$$
 for every $v \in V(G)$

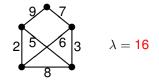
J. Ivančo

Introduction	History	Known constructions	New construction	Conclusion
Magic la	abelling			

Definition

An injective mapping *f* from E(G) into positive integers is called a magic labelling of *G* for an index λ if its index-mapping *f*^{*} satisfies

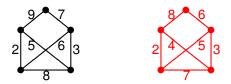
 $f^*(v) = \lambda$ for all $v \in V(G)$.



Košice, Slovakia

definition

A magic labelling *f* of *G* is called a supermagic labelling if the set $\{f(e) : e \in E(G)\}$ consists of consecutive positive integers.



definition

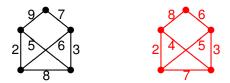
A graph *G* is called supermagic (magic) whenever there exists a supermagic (magic) labelling of *G*.

J. Ivančo

Košice, Slovakia

definition

A magic labelling *f* of *G* is called a supermagic labelling if the set $\{f(e) : e \in E(G)\}$ consists of consecutive positive integers.



definition

A graph *G* is called supermagic (magic) whenever there exists a supermagic (magic) labelling of *G*.

J. Ivančo

Košice, Slovakia

Introduction	History	Known constructions	New construction	Conclusion
History				

1963 – J. Sedláček: introduction of magic graphs

1978 – M. Doob: characterization of regular magic graphs

- 1983 S. Jezný, M. Trenkler: characterization of all magic graphs
- 1988 R. H. Jeurissen: other characterization of magic graphs

Introduction	History	Known constructions	New construction	Conclusion
History				

- 1963 J. Sedláček: introduction of magic graphs
- **1978** M. Doob: characterization of regular magic graphs
- 1983 S. Jezný, M. Trenkler: characterization of all magic graphs
- 1988 R. H. Jeurissen: other characterization of magic graphs

Introduction	History	Known constructions	New construction	Conclusion
History				

- 1963 J. Sedláček: introduction of magic graphs
- **1978** M. Doob: characterization of regular magic graphs
- 1983 S. Jezný, M. Trenkler: characterization of all magic graphs
- 1988 R. H. Jeurissen: other characterization of magic graphs

Introduction	History	Known constructions	New construction	Conclusion
History				

- 1963 J. Sedláček: introduction of magic graphs
- **1978** M. Doob: characterization of regular magic graphs
- 1983 S. Jezný, M. Trenkler: characterization of all magic graphs
- 1988 R. H. Jeurissen: other characterization of magic graphs

J. Ivančo

Introduction	History	Known constructions	New construction	Conclusion
History				

1966 – B. M. Stewart: introduction of supermagic graphs

- 1967 B. M. Stewart: characterization of supermagic complete graphs
- 2000 J. I.: characterization of supermagic complete multipartite graphs and supermagic cubes

 2004 – J. I., Z. Lastivková, A. Semaničová: characterization of supermagic line graphs of regular bipartite graphs

Introduction	History	Known constructions	New construction	Conclusion
History				

- 1966 B. M. Stewart: introduction of supermagic graphs
- 1967 B. M. Stewart: characterization of supermagic complete graphs
- 2000 J. I.: characterization of supermagic complete multipartite graphs and supermagic cubes
- 2004 J. I., Z. Lastivková, A. Semaničová: characterization of supermagic line graphs of regular bipartite graphs

Introduction	History	Known constructions	New construction	Conclusion
History				

- 1966 B. M. Stewart: introduction of supermagic graphs
- 1967 B. M. Stewart: characterization of supermagic complete graphs
- 2000 J. I.: characterization of supermagic complete multipartite graphs and supermagic cubes

 2004 – J. I., Z. Lastivková, A. Semaničová: characterization of supermagic line graphs of regular bipartite graphs

Introduction	History	Known constructions	New construction	Conclusion
History				

- **1966** B. M. Stewart: introduction of supermagic graphs
- 1967 B. M. Stewart: characterization of supermagic complete graphs
- 2000 J. I.: characterization of supermagic complete multipartite graphs and supermagic cubes
- 2004 J. I., Z. Lastivková, A. Semaničová: characterization of supermagic line graphs of regular bipartite graphs

J. Ivančo

Introduction	History	Known constructions	New construction	Conclusion
Sporadi	c constr	uctions		

Constructions used only for special graphs.

Theorem B. M. Stewart, 1967

The complete graph K_n is supermagic if and only if either $n \ge 6$ and $n \ne 0 \pmod{4}$ or n = 2.

Theorem 🛛 J. Sedláček, 1976

The Möbius ladder M_p is supermagic graph for every odd integer $p \ge 3$.

Introduction	History	Known constructions	New construction	Conclusion
Sporadi	c constr	uctions		

Constructions used only for special graphs.

Theorem B. M. Stewart, 1967

The complete graph K_n is supermagic if and only if either $n \ge 6$ and $n \ne 0 \pmod{4}$ or n = 2.

Theorem J. Sedláček, 1976

The Möbius ladder M_p is supermagic graph for every odd integer $p \ge 3$.

Graphs with supermagic factors

Constructions used for graphs decomposable into edge disjoint supermagic factors.

Theorem N. Hartsfield, G. Ringel, 1990

Let F_1, F_2, \ldots, F_k be mutually edge-disjoint supermagic (regular) factors of a graph *G* which form its decomposition. Then *G* is supermagic.

Copies of supermagic graphs

Constructions used for regular supermagic graphs.

Theorem J. I., 2000

Let *G* be a supermagic regular graph decomposable into $k \ge 2$ edge-disjoint *d*-factors. Then it holds:

- if k is even, then mG is supermagic for every positive integer m;
- if *k* is odd, then *mG* is supermagic for every odd positive integer *m*.

Corollary J. I., Z. Lastivková, A. Semaničová, 2004

Let G be a bipartite d-regular graph, where $d \ge 3$. Then the line graph L(G) is supermagic.

J. Ivančo

Košice, Slovakia

Copies of supermagic graphs

Constructions used for regular supermagic graphs.

Theorem J. I., 2000

Let *G* be a supermagic regular graph decomposable into $k \ge 2$ edge-disjoint *d*-factors. Then it holds:

- if k is even, then mG is supermagic for every positive integer m;
- if *k* is odd, then *mG* is supermagic for every odd positive integer *m*.

Corollary J. I., Z. Lastivková, A. Semaničová, 2004

Let G be a bipartite d-regular graph, where $d \ge 3$. Then the line graph L(G) is supermagic.

J. Ivančo

Košice, Slovakia

Copies of supermagic graphs

Constructions used for regular supermagic graphs.

Theorem J. I., 2000

Let *G* be a supermagic regular graph decomposable into $k \ge 2$ edge-disjoint *d*-factors. Then it holds:

- if k is even, then mG is supermagic for every positive integer m;
- if *k* is odd, then *mG* is supermagic for every odd positive integer *m*.

Corollary J. I., Z. Lastivková, A. Semaničová, 2004

Let *G* be a bipartite *d*-regular graph, where $d \ge 3$. Then the line graph L(G) is supermagic.

J. Ivančo

Košice, Slovakia

Graphs decomposable into 2-factors

Theorem N. Hartsfield, G. Ringel, 1990

Let G be a bipartite 4-regular graph decomposable into two edge-disjoint Hamilton cycles. Then G is supermagic.

Theorem J. I., 2000

Let G be a bipartite 4-regular graph which can be decomposed into pairwise edge-disjoint 4-cycles. Then G is supermagic.

Theorem J. I., 2000

Let G be a 3-regular graph containing a 1-factor. Then the line graph of G is a supermagic graph.

J. Ivančo

Košice, Slovakia

Graphs decomposable into 2-factors

Theorem N. Hartsfield, G. Ringel, 1990

Let G be a bipartite 4-regular graph decomposable into two edge-disjoint Hamilton cycles. Then G is supermagic.

Theorem J. I., 2000

Let G be a bipartite 4-regular graph which can be decomposed into pairwise edge-disjoint 4-cycles. Then G is supermagic.

Theorem J. I., 2000

Let G be a 3-regular graph containing a 1-factor. Then the line graph of G is a supermagic graph.

Graphs decomposable into 2-factors

Theorem N. Hartsfield, G. Ringel, 1990

Let G be a bipartite 4-regular graph decomposable into two edge-disjoint Hamilton cycles. Then G is supermagic.

Theorem J. I., 2000

Let G be a bipartite 4-regular graph which can be decomposed into pairwise edge-disjoint 4-cycles. Then G is supermagic.

Theorem J. I., 2000

Let G be a 3-regular graph containing a 1-factor. Then the line graph of G is a supermagic graph.

J. Ivančo

Košice, Slovakia

Graphs decomposable into Eulerian factors

Theorem J. I., 2007

Let *G* be a 4k-regular bipartite graph which can be decomposed into two edge-disjoint connected 2k-factors. Then *G* is a supermagic graph.

Corollary

Let G be a 4k-regular bipartite graph of order 2n. If 4k - 2 > n/2, then G is a supermagic graph.

Graphs decomposable into Eulerian factors

Theorem J. I., 2007

Let *G* be a 4k-regular bipartite graph which can be decomposed into two edge-disjoint connected 2k-factors. Then *G* is a supermagic graph.

Corollary

Let *G* be a 4k-regular bipartite graph of order 2n. If 4k - 2 > n/2, then *G* is a supermagic graph.

J. Ivančo

Košice, Slovakia

Graphs decomposable into Eulerian factors

Theorem J. I., 2007

Let *G* be a *d*-regular bipartite graph of order 2n such that one of the following conditions is satisfied:

- $d \equiv 0 \pmod{4}$ and d 2 > n/2,
- $d \equiv 1 \pmod{4}$, $n \equiv 1 \pmod{2}$, d 11 > n/2 and $d \ge (3n+2)/4$,

• $d \equiv 2 \pmod{4}$, $n \equiv 1 \pmod{2}$ and d-8 > n/2,

- $d \equiv 2 \pmod{4}$, $n \equiv 0 \pmod{2}$, d 8 > n/2 and $d \ge (3n+2)/4$,
- $d \equiv 3 \pmod{4}$, $n \equiv 1 \pmod{2}$, d 5 > n/2 and $d \ge (3n+2)/4$.

Then G is a supermagic graph.

J. Ivančo

Košice, Slovakia

Double-consecutive labelling

Definition

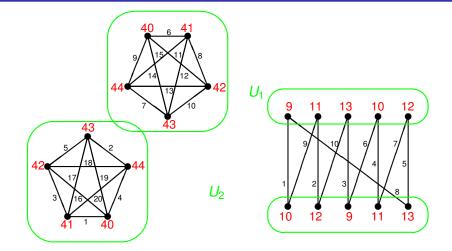
Let U_1, U_2 be subsets of V(G) such that $|U_1| = |U_2| = n$, $U_1 \cup U_2 = V(G)$ and $U_1 \cap U_2 = \emptyset$. An injective mapping *f* from E(G) into positive integers is called a double-consecutive labelling (DC-labelling) with respect to (U_1, U_2) if its index-mapping *f*^{*} satisfies

 $f^*(U_1) = f^*(U_2) = \{a, a+1, \dots, a+n-1\}$ for some integer *a*.

Constructions of Supermagic Graphs

J. Ivančo

Introduction	History	Known constructions	New construction	Conclusion
DC-labe	ellings			



J. Ivančo

Košice, Slovakia

DC-labellings of bipartite graphs

Lemma

Let *G* be a 1-regular bipartite graph of order 2n with parts U_1 and U_2 . Then there is a DC-labelling *f* of *G* with respect to (U_1, U_2) .

Lemma

Let *G* be a connected 2-regular bipartite graph of order 2*n* with parts U_1 and U_2 . If *n* is an odd integer, then there is a DC-labelling *f* of *G* with respect to (U_1, U_2) .

DC-labellings of bipartite graphs

Lemma

Let *G* be a 1-regular bipartite graph of order 2n with parts U_1 and U_2 . Then there is a DC-labelling *f* of *G* with respect to (U_1, U_2) .

Lemma

Let *G* be a connected 2-regular bipartite graph of order 2n with parts U_1 and U_2 . If *n* is an odd integer, then there is a DC-labelling *f* of *G* with respect to (U_1, U_2) .

J. Ivančo

Košice, Slovakia

DC-labellings of disjoint union of two graphs

Lemma

Let G_1 and G_2 be disjoint 3-regular Hamiltonian bipartite graphs each of order n = 4k, $k \ge 2$. Then there exists a DC-labelling fof $G_1 \cup G_2$ with respect to $(V(G_1), V(G_2))$.

Lemma

Let G_1 and G_2 be disjoint regular Hamiltonian graphs each of odd order n and degree 4 (6). Then there exists a DC-labelling f of $G_1 \cup G_2$ with respect to $(V(G_1), V(G_2))$.

DC-labellings of disjoint union of two graphs

Lemma

Let G_1 and G_2 be disjoint 3-regular Hamiltonian bipartite graphs each of order n = 4k, $k \ge 2$. Then there exists a DC-labelling fof $G_1 \cup G_2$ with respect to $(V(G_1), V(G_2))$.

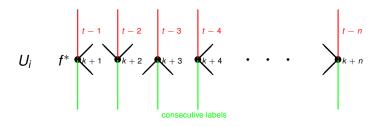
Lemma

Let G_1 and G_2 be disjoint regular Hamiltonian graphs each of odd order *n* and degree 4 (6). Then there exists a DC-labelling *f* of $G_1 \cup G_2$ with respect to $(V(G_1), V(G_2))$.

J. Ivančo

Košice, Slovakia

Extension of DC-labelling



J. Ivančo

Košice, Slovakia

Extension of DC-labelling

Lemma

Let *H* be a balanced bipartite graph of order 2*n* with parts U_1 and U_2 . Let *F* be a 2-factor of *H* and let *g* be a DC-labelling of G = H - F with respect to (U_1, U_2) . Then there exists a DC-labeling *f* of *H* with respect to (U_1, U_2) .

_emma

Let H_1 and H_2 be disjoint graphs each of order *n*. Let *F* be a 4-factor of $H = H_1 \cup H_2$ and let *g* be a DC-labelling of G = H - F with respect to $(V(H_1), V(H_2))$. Then there exists a DC-labeling *f* of *H* with respect to $(V(H_1), V(H_2))$.

Extension of DC-labelling

Lemma

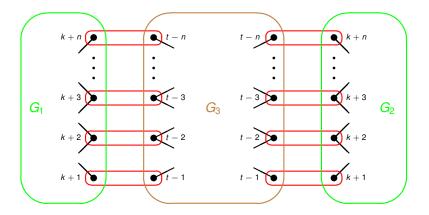
Let *H* be a balanced bipartite graph of order 2*n* with parts U_1 and U_2 . Let *F* be a 2-factor of *H* and let *g* be a DC-labelling of G = H - F with respect to (U_1, U_2) . Then there exists a DC-labeling *f* of *H* with respect to (U_1, U_2) .

Lemma

Let H_1 and H_2 be disjoint graphs each of order *n*. Let *F* be a 4-factor of $H = H_1 \cup H_2$ and let *g* be a DC-labelling of G = H - F with respect to $(V(H_1), V(H_2))$. Then there exists a DC-labeling *f* of *H* with respect to $(V(H_1), V(H_2))$.

Introduction	History	Known constructions	New construction	Conclusion

The main idea of the construction



Košice, Slovakia

The basic result

Theorem

Let G_1 , G_2 be disjoint graphs each of order *n* and let G_3 be a balanced bipartite graph of order 2*n* with parts U_1 and U_2 . Let *f* be a DC-labelling of $G_1 \cup G_2$ with respect to $(V(G_1), V(G_2))$ and let *g* be a DC-labelling of G_3 with respect to (U_1, U_2) . If *f* and *g* are complementary, then there exists a supermagic graph *G* such that $V(G) = U_1 \cup U_2$, $G(U_1)$ is isomorphic to G_1 , $G(U_2)$ is isomorphic to G_2 and $G(U_1, U_2)$ is isomorphic to G_3 .

Constructions of Supermagic Graphs

J. Ivančo

Complements of bipartite graphs

Theorem

- Let G be a d-regular bipartite graph of order 8k. The complement of G is a supermagic graph if and only if d is odd.
- Let *G* be a *d*-regular bipartite graph of order 2*n*, where *n* is odd and *d* is even. The complement of *G* is a supermagic graph if and only if $(n, d) \neq (3, 2)$.
- Let *G* be a *d*-regular bipartite graph of order 2*n*. If 2d < n and $5 \le n \equiv d \equiv 1 \pmod{2}$, then the complement of *G* is a supermagic graph.

Complements of bipartite graphs

Theorem

- Let G be a d-regular bipartite graph of order 8k. The complement of G is a supermagic graph if and only if d is odd.
- Let *G* be a *d*-regular bipartite graph of order 2*n*, where *n* is odd and *d* is even. The complement of *G* is a supermagic graph if and only if $(n, d) \neq (3, 2)$.
- Let *G* be a *d*-regular bipartite graph of order 2*n*. If 2d < n and $5 \le n \equiv d \equiv 1 \pmod{2}$, then the complement of *G* is a supermagic graph.

Complements of bipartite graphs

Theorem

- Let G be a d-regular bipartite graph of order 8k. The complement of G is a supermagic graph if and only if d is odd.
- Let *G* be a *d*-regular bipartite graph of order 2*n*, where *n* is odd and *d* is even. The complement of *G* is a supermagic graph if and only if $(n, d) \neq (3, 2)$.
- Let *G* be a *d*-regular bipartite graph of order 2*n*. If 2d < n and $5 \le n \equiv d \equiv 1 \pmod{2}$, then the complement of *G* is a supermagic graph.

Constructions of Supermagic Graphs

J. Ivančo

Theorem

Let G_1 and G_2 be disjoint *d*-regular Hamiltonian graphs of order *n*. If $d \ge 4$ is even and *n* is odd, then the join $G_1 \oplus G_2$ is a supermagic graph.

Corollary

Let G_1 and G_2 be disjoint *d*-regular graphs of order *n*. If $2d \ge n, 5 \le n \equiv d \equiv 1 \pmod{2}$ and $4 \le d \equiv 0 \pmod{2}$, then the join $G_1 \oplus G_2$ is a supermagic graph.

J. Ivančo

Košice, Slovakia

Theorem

Let G_1 and G_2 be disjoint *d*-regular Hamiltonian graphs of order *n*. If $d \ge 4$ is even and *n* is odd, then the join $G_1 \oplus G_2$ is a supermagic graph.

Corollary

Let G_1 and G_2 be disjoint *d*-regular graphs of order *n*. If $2d \ge n, 5 \le n \equiv d \equiv 1 \pmod{2}$ and $4 \le d \equiv 0 \pmod{2}$, then the join $G_1 \oplus G_2$ is a supermagic graph.

Non–regular supermagic graphs

Theorem

Let G_i , $i \in \{1, 2\}$, be a d_i -regular Hamiltonian graph of order n. If $4 \le d_1 \equiv 0 \pmod{4}$, $d_1 = d_2 + 2$ and n is odd, then the join $G_1 \oplus G_2$ is a supermagic graph.

Corollary

Let G_i , $i \in \{1, 2\}$, be a d_i -regular graph of odd order n. If $4 \le d_1 \equiv 0 \pmod{4}$, $d_1 = d_2 + 2$ and $2d_2 \ge n$, then the join $G_1 \oplus G_2$ is a supermagic graph.

J. Ivančo

Košice, Slovakia

Non–regular supermagic graphs

Theorem

Let G_i , $i \in \{1, 2\}$, be a d_i -regular Hamiltonian graph of order n. If $4 \le d_1 \equiv 0 \pmod{4}$, $d_1 = d_2 + 2$ and n is odd, then the join $G_1 \oplus G_2$ is a supermagic graph.

Corollary

Let G_i , $i \in \{1, 2\}$, be a d_i -regular graph of odd order n. If $4 \le d_1 \equiv 0 \pmod{4}$, $d_1 = d_2 + 2$ and $2d_2 \ge n$, then the join $G_1 \oplus G_2$ is a supermagic graph.

J. Ivančo

Košice, Slovakia

Introduction	History	Known constructions	New construction	Conclusion

Thank you very much for your attention

Košice, Slovakia