Constructions of Supermagic Graphs

Jaroslav Ivančo

Institute of Mathematics, Faculty of Science P.J. Šafárik University, Košice, Slovakia

Pracovné stretnutie riešitel'ov Centra excelentnosti CEX CaKS Nový Smokovec 11.10.-13.10.2010

Európsky fond regionálneho rozvoja

Podporujeme výskumné aktivity na Slovensku/ Projekt je spolufinancovaný zo zdrojov EU

Index-mapping

Definition

Let G be a simple graph without isolated vertices and let f be a mapping from $E(G)$ into positive integers. The index-mapping of f is the mapping f^{*} from $V(G)$ into positive integers defined by

$$
f^{*}(v)=\sum_{v u \in E(G)} f(v u) \quad \text { for every } v \in V(G)
$$

Magic labelling

Definition

An injective mapping f from $E(G)$ into positive integers is called a magic labelling of G for an index λ if its index-mapping f^{*} satisfies

$$
f^{*}(v)=\lambda \quad \text { for all } v \in V(G)
$$

Supermagic labelling

definition

A magic labelling f of G is called a supermagic labelling if the set $\{f(e): e \in E(G)\}$ consists of consecutive positive integers.

Supermagic labelling

definition

A magic labelling f of G is called a supermagic labelling if the set $\{f(e): e \in E(G)\}$ consists of consecutive positive integers.

definition

A graph G is called supermagic (magic) whenever there exists a supermagic (magic) labelling of G.

History

Magic graphs

■ 1963 - J. Sedláček: introduction of magic graphs
1978 - M. Doob: characterization of regular magic graphs 1983 - S. Jezný, M. Trenkler: characterization of all magic graphs

History

Magic graphs

- 1963 - J. Sedláček: introduction of magic graphs

■ 1978 - M. Doob: characterization of regular magic graphs
\square
graphs
1988 - R H. Jeurissen: other characterization of magic
graphs

History

Magic graphs

- 1963 - J. Sedláček: introduction of magic graphs
- 1978 - M. Doob: characterization of regular magic graphs
- 1983 - S. Jezný, M. Trenkler: characterization of all magic graphs

History

Magic graphs

- 1963 - J. Sedláček: introduction of magic graphs
- 1978 - M. Doob: characterization of regular magic graphs

■ 1983 - S. Jezný, M. Trenkler: characterization of all magic graphs
■ 1988 - R. H. Jeurissen: other characterization of magic graphs

History

Supermagic graphs

■ 1966 - B. M. Stewart: introduction of supermagic graphs
1967 - B. M. Stewart: characterization of supermagic complete graphs 2000 - J. I.: charac erization of supermagic complete multipartite graphs and supermagic cubes

History

Supermagic graphs

■ 1966 - B. M. Stewart: introduction of supermagic graphs
■ 1967 - B. M. Stewart: characterization of supermagic complete graphs

- 2000 - J. I.: characterization of supermagic complete
multipartite graphs and supermagic cubes
- 2004 - J. I., Z. Lastivková, A. Semaničová:
characterization of supermagic line graphs of regular
bipartite graphs

History

Supermagic graphs

- 1966 - B. M. Stewart: introduction of supermagic graphs

■ 1967 - B. M. Stewart: characterization of supermagic complete graphs
$■ 2000$ - J. I.: characterization of supermagic complete multipartite graphs and supermagic cubes
characterization of supermagic line graphs of regular bipartite graphs

History

Supermagic graphs

- 1966 - B. M. Stewart: introduction of supermagic graphs

■ 1967 - B. M. Stewart: characterization of supermagic complete graphs
■ 2000 - J. I.: characterization of supermagic complete multipartite graphs and supermagic cubes

- 2004 - J. I., Z. Lastivková, A. Semaničová: characterization of supermagic line graphs of regular bipartite graphs

Sporadic constructions

Constructions used only for special graphs.

Theorem B. M. Stewart, 1967

The complete graph K_{n} is supermagic if and only if either $n \geq 6$ and $n \not \equiv 0(\bmod 4)$ or $n=2$.

Sporadic constructions

Constructions used only for special graphs.

Theorem B. M. Stewart, 1967

The complete graph K_{n} is supermagic if and only if either $n \geq 6$ and $n \not \equiv 0(\bmod 4)$ or $n=2$.

Theorem J. Sedláček, 1976

The Möbius ladder M_{p} is supermagic graph for every odd integer $p \geq 3$.

Graphs with supermagic factors

Constructions used for graphs decomposable into edge disjoint supermagic factors.

Theorem N. Hartsfield, G. Ringel, 1990

Let $F_{1}, F_{2}, \ldots, F_{k}$ be mutually edge-disjoint supermagic (regular) factors of a graph G which form its decomposition. Then G is supermagic.

Copies of supermagic graphs

Constructions used for regular supermagic graphs.

Theorem J. I., 2000

Let G be a supermagic regular graph decomposable into $k \geq 2$ edge-disjoint d-factors. Then it holds:

■ if k is even, then $m G$ is supermagic for every positive integer m;

Copies of supermagic graphs

Constructions used for regular supermagic graphs.

Theorem J. I., 2000

Let G be a supermagic regular graph decomposable into $k \geq 2$ edge-disjoint d-factors. Then it holds:

■ if k is even, then $m G$ is supermagic for every positive integer m;

- if k is odd, then $m G$ is supermagic for every odd positive integer m.

Copies of supermagic graphs

Constructions used for regular supermagic graphs.

Theorem J. I., 2000

Let G be a supermagic regular graph decomposable into $k \geq 2$ edge-disjoint d-factors. Then it holds:

■ if k is even, then $m G$ is supermagic for every positive integer m;
■ if k is odd, then $m G$ is supermagic for every odd positive integer m.

Corollary J. I., Z. Lastivková, A. Semaničová, 2004

Let G be a bipartite d-regular graph, where $d \geq 3$. Then the line graph $L(G)$ is supermagic.

Graphs decomposable into 2-factors

Theorem N. Hartsfield, G. Ringel, 1990

Let G be a bipartite 4-regular graph decomposable into two edge-disjoint Hamilton cycles. Then G is supermagic.

\qquad

\square

Graphs decomposable into 2-factors

Theorem N. Hartsfield, G. Ringel, 1990

Let G be a bipartite 4-regular graph decomposable into two edge-disjoint Hamilton cycles. Then G is supermagic.

Theorem J. I., 2000

Let G be a bipartite 4-regular graph which can be decomposed into pairwise edge-disjoint 4-cycles. Then G is supermagic.

Graphs decomposable into 2-factors

Theorem N. Hartsfield, G. Ringel, 1990

Let G be a bipartite 4-regular graph decomposable into two edge-disjoint Hamilton cycles. Then G is supermagic.

Theorem J. I., 2000

Let G be a bipartite 4-regular graph which can be decomposed into pairwise edge-disjoint 4-cycles. Then G is supermagic.

Theorem J. I., 2000

Let G be a 3-regular graph containing a 1-factor. Then the line graph of G is a supermagic graph.

Graphs decomposable into Eulerian factors

Theorem J. I., 2007

Let G be a $4 k$-regular bipartite graph which can be decomposed into two edge-disjoint connected $2 k$-factors. Then G is a supermagic graph.

Graphs decomposable into Eulerian factors

Theorem J. I., 2007

Let G be a $4 k$-regular bipartite graph which can be decomposed into two edge-disjoint connected $2 k$-factors. Then G is a supermagic graph.

Corollary

Let G be a $4 k$-regular bipartite graph of order $2 n$. If $4 k-2>n / 2$, then G is a supermagic graph.

Graphs decomposable into Eulerian factors

Theorem J. I., 2007

Let G be a d-regular bipartite graph of order $2 n$ such that one of the following conditions is satisfied:
$\square d \equiv 0(\bmod 4)$ and $d-2>n / 2$,
$\square d \equiv 1(\bmod 4), n \equiv 1(\bmod 2), d-11>n / 2$ and $d \geq(3 n+2) / 4$,
$\square d \equiv 2(\bmod 4), n \equiv 1(\bmod 2)$ and $d-8>n / 2$,
■ $d \equiv 2(\bmod 4), n \equiv 0(\bmod 2), d-8>n / 2$ and $d \geq(3 n+2) / 4$,
$\square d \equiv 3(\bmod 4), n \equiv 1(\bmod 2), d-5>n / 2$ and $d \geq(3 n+2) / 4$.
Then G is a supermagic graph.

Double-consecutive labelling

Definition

Let U_{1}, U_{2} be subsets of $V(G)$ such that $\left|U_{1}\right|=\left|U_{2}\right|=n$, $U_{1} \cup U_{2}=V(G)$ and $U_{1} \cap U_{2}=\emptyset$. An injective mapping f from $E(G)$ into positive integers is called a double-consecutive labelling (DC-labelling) with respect to $\left(U_{1}, U_{2}\right)$ if its index-mapping f^{*} satisfies
$f^{*}\left(U_{1}\right)=f^{*}\left(U_{2}\right)=\{a, a+1, \ldots, a+n-1\}$ for some integer a.

DC-labellings

J. Ivančo

DC-labellings of bipartite graphs

Lemma

Let G be a 1-regular bipartite graph of order $2 n$ with parts U_{1} and U_{2}. Then there is a DC-labelling f of G with respect to $\left(U_{1}, U_{2}\right)$.

DC-labellings of bipartite graphs

Lemma

Let G be a 1-regular bipartite graph of order $2 n$ with parts U_{1} and U_{2}. Then there is a DC-labelling f of G with respect to $\left(U_{1}, U_{2}\right)$.

Lemma

Let G be a connected 2-regular bipartite graph of order $2 n$ with parts U_{1} and U_{2}. If n is an odd integer, then there is a DC-labelling f of G with respect to $\left(U_{1}, U_{2}\right)$.

DC-labellings of disjoint union of two graphs

Lemma

Let G_{1} and G_{2} be disjoint 3-regular Hamiltonian bipartite graphs each of order $n=4 k, k \geq 2$. Then there exists a DC-labelling f of $G_{1} \cup G_{2}$ with respect to $\left(V\left(G_{1}\right), V\left(G_{2}\right)\right)$.

DC-labellings of disjoint union of two graphs

Lemma

Let G_{1} and G_{2} be disjoint 3-regular Hamiltonian bipartite graphs each of order $n=4 k, k \geq 2$. Then there exists a DC-labelling f of $G_{1} \cup G_{2}$ with respect to $\left(V\left(G_{1}\right), V\left(G_{2}\right)\right)$.

Lemma

Let G_{1} and G_{2} be disjoint regular Hamiltonian graphs each of odd order n and degree 4 (6). Then there exists a DC-labelling f of $G_{1} \cup G_{2}$ with respect to $\left(V\left(G_{1}\right), V\left(G_{2}\right)\right)$.

Extension of DC-labelling

Extension of DC-labelling

Lemma

Let H be a balanced bipartite graph of order $2 n$ with parts U_{1} and U_{2}. Let F be a 2-factor of H and let g be a DC-labelling of $G=H-F$ with respect to $\left(U_{1}, U_{2}\right)$. Then there exists a DC-labeling f of H with respect to $\left(U_{1}, U_{2}\right)$.

Extension of DC-labelling

Lemma

Let H be a balanced bipartite graph of order $2 n$ with parts U_{1} and U_{2}. Let F be a 2-factor of H and let g be a DC-labelling of $G=H-F$ with respect to $\left(U_{1}, U_{2}\right)$. Then there exists a DC-labeling f of H with respect to $\left(U_{1}, U_{2}\right)$.

Lemma

Let H_{1} and H_{2} be disjoint graphs each of order n. Let F be a 4-factor of $H=H_{1} \cup H_{2}$ and let g be a DC-labelling of $G=H-F$ with respect to $\left(V\left(H_{1}\right), V\left(H_{2}\right)\right)$. Then there exists a DC-labeling f of H with respect to $\left(V\left(H_{1}\right), V\left(H_{2}\right)\right)$.

The main idea of the construction

The basic result

Theorem

Let G_{1}, G_{2} be disjoint graphs each of order n and let G_{3} be a balanced bipartite graph of order $2 n$ with parts U_{1} and U_{2}. Let f be a DC-labelling of $G_{1} \cup G_{2}$ with respect to $\left(V\left(G_{1}\right), V\left(G_{2}\right)\right)$ and let g be a DC-labelling of G_{3} with respect to $\left(U_{1}, U_{2}\right)$. If f and g are complementary, then there exists a supermagic graph G such that $V(G)=U_{1} \cup U_{2}, G\left(U_{1}\right)$ is isomorphic to G_{1}, $G\left(U_{2}\right)$ is isomorphic to G_{2} and $G\left(U_{1}, U_{2}\right)$ is isomorphic to G_{3}.

Complements of bipartite graphs

Theorem

■ Let G be a d-regular bipartite graph of order $8 k$. The complement of G is a supermagic graph if and only if d is odd.
odd and d is even. The complement of G is a supermagic araph if and only if $(n, d) \neq(3,2)$ Let G be a d-regular bipartite graph of order $2 n$. If $2 d$ and $5 \leq n \equiv d \equiv 1(\bmod 2)$, then the complement of G is a supermaaic araph

Complements of bipartite graphs

Theorem

$■$ Let G be a d-regular bipartite graph of order $8 k$. The complement of G is a supermagic graph if and only if d is odd.

- Let G be a d-regular bipartite graph of order $2 n$, where n is odd and d is even. The complement of G is a supermagic graph if and only if $(n, d) \neq(3,2)$.

Complements of bipartite graphs

Theorem

$■$ Let G be a d-regular bipartite graph of order $8 k$. The complement of G is a supermagic graph if and only if d is odd.

- Let G be a d-regular bipartite graph of order $2 n$, where n is odd and d is even. The complement of G is a supermagic graph if and only if $(n, d) \neq(3,2)$.
■ Let G be a d-regular bipartite graph of order $2 n$. If $2 d<n$ and $5 \leq n \equiv d \equiv 1(\bmod 2)$, then the complement of G is a supermagic graph.

Joins of graphs

Theorem

Let G_{1} and G_{2} be disjoint d-regular Hamiltonian graphs of order n. If $d \geq 4$ is even and n is odd, then the join $G_{1} \oplus G_{2}$ is a supermagic graph.

Joins of graphs

Theorem

Let G_{1} and G_{2} be disjoint d-regular Hamiltonian graphs of order n. If $d \geq 4$ is even and n is odd, then the join $G_{1} \oplus G_{2}$ is a supermagic graph.

Corollary

Let G_{1} and G_{2} be disjoint d-regular graphs of order n. If $2 d \geq n, 5 \leq n \equiv d \equiv 1(\bmod 2)$ and $4 \leq d \equiv 0(\bmod 2)$, then the join $G_{1} \oplus G_{2}$ is a supermagic graph.

Non-regular supermagic graphs

Theorem

Let $G_{i}, i \in\{1,2\}$, be a d_{i}-regular Hamiltonian graph of order n. If $4 \leq d_{1} \equiv 0(\bmod 4), d_{1}=d_{2}+2$ and n is odd, then the join $G_{1} \oplus G_{2}$ is a supermagic graph.

Non-regular supermagic graphs

Theorem

Let $G_{i}, i \in\{1,2\}$, be a d_{i}-regular Hamiltonian graph of order n. If $4 \leq d_{1} \equiv 0(\bmod 4), d_{1}=d_{2}+2$ and n is odd, then the join $G_{1} \oplus G_{2}$ is a supermagic graph.

Corollary

Let $G_{i}, i \in\{1,2\}$, be a d_{i}-regular graph of odd order n. If $4 \leq d_{1} \equiv 0(\bmod 4), d_{1}=d_{2}+2$ and $2 d_{2} \geq n$, then the join $G_{1} \oplus G_{2}$ is a supermagic graph.

Thank you very much for your attention

