THE MATRIX-TREE THEOREM MATH 381 VERSION OF MARCH 22, 2013

Chapter 5 gives formulas for the number of spanning trees in some graphs. There is a remarkable formula for the number of spanning trees in any graph. It involves a matrix associated with a graph.

**Definition MT.1.** The *adjacency matrix* of a graph G with vertex set  $V = \{v_1, v_2, \ldots, v_p\}$  is the  $p \times p$  matrix  $A(G) = (a_{ij})$  where

$$a_{ij} = \begin{cases} 1 & \text{if } v_i \text{ and } v_j \text{ are adjacent,} \\ 0 & \text{if } v_i \text{ and } v_j \text{ are not adjacent} \end{cases}$$

In particular, the diagonal is all 0, since  $v_i$  is not adjacent to itself in a graph.

The adjacency matrix is a symmetric matrix; therefore, by the diagonalization theorem of symmetric matrices, it has all real eigenvalues. We won't go into eigenvalues of adjacency matrices, but there is a lot of research on them right up to now.

**Definition MT.2.** The *degree matrix* of G is the  $p \times p$  matrix D(G) with the degree of  $v_i$  on the diagonal in row and column i, and with 0's off the diagonal.

The next matrix is the one we are really interested in.

**Definition MT.3.** The *Kirchhoff matrix* of G is the matrix K(G) = D(G) - A(G).

**Example MT.1.** Let  $G = K_4 \setminus v_2 v_4$ . Then

$$A(G) = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}, \quad D(G) = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \quad K(G) = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ -1 & 0 & -1 & 2 \end{pmatrix}.$$



FIGURE MT.1.  $K_4 \setminus v_2 v_4$ 

**Theorem MT.1.** The determinant of the Kirchhoff matrix is zero: det K(G) = 0.

*Proof.* The sum of the entries in row *i* of the adjacency matrix A(G) is deg  $v_i$ , by the definition of degree. Therefore, in K(G), the sum of the entries in row *i* is  $-\deg v_i + \deg v_i = 0$ .  $\Box$ 

This is not why the Kirchhoff matrix is interesting. Let's delete one row and one column from it and *then* take the determinant. We call this matrix  $K_{ij}$ , if row *i* and column *j* are deleted. For example:

**Example MT.2.** Apply that procedure to Example MT.1. Let's delete row 1 and column 1.

$$K(G)_{11} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 2 \end{pmatrix}, \quad \det K(G)_{11} = \begin{vmatrix} 2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 2 \end{vmatrix} = (12+0+0) - (2+2+0) = 8.$$

Another way to do it:

$$K(G)_{13} = \begin{pmatrix} -1 & 2 & 0 \\ -1 & -1 & -1 \\ -1 & 0 & 2 \end{pmatrix}, \quad \det K(G)_{13} = \begin{vmatrix} -1 & 2 & 0 \\ -1 & -1 & -1 \\ -1 & 0 & 2 \end{vmatrix} = (2+2+0) - (0-4+0) = 8.$$

Now count the spanning trees in G. Do you get 8?

**Theorem MT.2.** For any  $i, j \in \{1, 2, ..., p\}$ , the value of  $(-1)^{i+j} \det K(G)_{ij}$  is the number of spanning trees in G.

I will not prove this theorem. It involves factoring the Kirchhoff matrix into a product  $H(G)H(G)^T$  (where H(G) is a matrix called the *incidence matrix* of G), a matrix theorem called the Cauchy–Binet Theorem that gives a formula for the determinant of a product of the form  $HH^T$  (where H is any matrix), and some clever analysis of graph matrices.

**Exercise MT.1.** (a) Find the adjacency and Kirchhoff matrices of  $K_3$ .

(b) Try several combinations of row and column deletions and find their determinants (with the sign factor), i.e.,  $(-1)^{i+j} \det K(K_3)_{ij}$  for several combinations of i and j. Try at least one case where i = j, and at least one where  $i \neq j$ . You notice that you always get the same value of the (signed) determinant.

(c) Count the spanning trees of  $K_3$  directly in the graph. Compare with (b). They ought to be equal; if not, did you make a mistake?

**Exercise MT.2.** (a) Find the adjacency and Kirchhoff matrices of  $C_4$ , the cycle of length 4.

(b) Try several combinations of row and column deletions and find their determinants, i.e.,  $(-1)^{i+j} \det K(C_4)_{ij}$  for several combinations of i and j. Try at least one case where i = j, and at least one where  $i \neq j$ . You notice that you always get the same value of the (signed) determinant.

(c) Count the spanning trees of  $C_4$  directly in the graph. Compare with (b).

They ought to be equal; if not, did you make a mistake? The most likely mistake is to evaluate a  $4 \times 4$  determinant incorrectly. Make sure you know how to do it.

## **Exercise MT.3.** Do the same for $K_4$ .

(a) Find  $A(K_4)$ ,  $D(K_4)$ , and  $K(K_4)$ .

(b) Write out  $K(K_4)_{ii}$  for one choice of *i*, and evaluate its determinant by using row and column operations to simplify the matrix.

(c) Does your determinant agree with Cayley's formula  $s(K_4) = 16$ ? If not, did you make a mistake?

**Exercise MT.4.** Do the same for  $K_n$ , in the following way:

(a) Find  $A(K_n)$ ,  $D(K_n)$ , and  $K(K_n)$ .

(b) Write out  $K(K_n)_{ii}$  for one choice of *i*, and evaluate its determinant by using row and column operations to simplify the matrix.

(c) Does your determinant agree with Cayley's formula  $s(K_n) = n^{n-2}$  (Theorem 5.2.1)? If you made no mistake, you have a proof of Cayley's formula by matrix theory.

**Exercise MT.5.** Do parts (a, b, c) from Exercise MT.4 for the complete bipartite graph  $K_{m,n}$ .

Does your result agree with Theorems 5.3.1 (m = 2) and 5.3.2 (m = 3)?