Chapter 5 gives formulas for the number of spanning trees in some graphs. There is a remarkable formula for the number of spanning trees in any graph. It involves a matrix associated with a graph.

Definition MT.1. The adjacency matrix of a graph G with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is the $p \times p$ matrix $A(G)=\left(a_{i j}\right)$ where

$$
a_{i j}= \begin{cases}1 & \text { if } v_{i} \text { and } v_{j} \text { are adjacent } \\ 0 & \text { if } v_{i} \text { and } v_{j} \text { are not adjacent. }\end{cases}
$$

In particular, the diagonal is all 0 , since v_{i} is not adjacent to itself in a graph.
The adjacency matrix is a symmetric matrix; therefore, by the diagonalization theorem of symmetric matrices, it has all real eigenvalues. We won't go into eigenvalues of adjacency matrices, but there is a lot of research on them right up to now.

Definition MT.2. The degree matrix of G is the $p \times p$ matrix $D(G)$ with the degree of v_{i} on the diagonal in row and column i, and with 0 's off the diagonal.

The next matrix is the one we are really interested in.
Definition MT.3. The Kirchhoff matrix of G is the matrix $K(G)=D(G)-A(G)$.
Example MT.1. Let $G=K_{4} \backslash v_{2} v_{4}$. Then

$$
A(G)=\left(\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right), \quad D(G)=\left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 2
\end{array}\right), \quad K(G)=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 2 & -1 & 0 \\
-1 & -1 & 3 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right)
$$

Figure MT.1. $K_{4} \backslash v_{2} v_{4}$

Theorem MT.1. The determinant of the Kirchhoff matrix is zero: $\operatorname{det} K(G)=0$.
Proof. The sum of the entries in row i of the adjacency matrix $A(G)$ is $\operatorname{deg} v_{i}$, by the definition of degree. Therefore, in $K(G)$, the sum of the entries in row i is $-\operatorname{deg} v_{i}+\operatorname{deg} v_{i}=0$.

This is not why the Kirchhoff matrix is interesting. Let's delete one row and one column from it and then take the determinant. We call this matrix $K_{i j}$, if row i and column j are deleted. For example:

Example MT.2. Apply that procedure to Example MT.1. Let's delete row 1 and column 1.
$K(G)_{11}=\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 2\end{array}\right), \quad \operatorname{det} K(G)_{11}=\left|\begin{array}{ccc}2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 2\end{array}\right|=(12+0+0)-(2+2+0)=8$.
Another way to do it:
$K(G)_{13}=\left(\begin{array}{ccc}-1 & 2 & 0 \\ -1 & -1 & -1 \\ -1 & 0 & 2\end{array}\right), \quad \operatorname{det} K(G)_{13}=\left|\begin{array}{ccc}-1 & 2 & 0 \\ -1 & -1 & -1 \\ -1 & 0 & 2\end{array}\right|=(2+2+0)-(0-4+0)=8$.
Now count the spanning trees in G. Do you get 8?
Theorem MT.2. For any $i, j \in\{1,2, \ldots, p\}$, the value of $(-1)^{i+j} \operatorname{det} K(G)_{i j}$ is the number of spanning trees in G.

I will not prove this theorem. It involves factoring the Kirchhoff matrix into a product $H(G) H(G)^{T}$ (where $H(G)$ is a matrix called the incidence matrix of G), a matrix theorem called the Cauchy-Binet Theorem that gives a formula for the determinant of a product of the form $H H^{T}$ (where H is any matrix), and some clever analysis of graph matrices.

Exercise MT.1. (a) Find the adjacency and Kirchhoff matrices of K_{3}.
(b) Try several combinations of row and column deletions and find their determinants (with the sign factor), i.e., $(-1)^{i+j} \operatorname{det} K\left(K_{3}\right)_{i j}$ for several combinations of i and j. Try at least one case where $i=j$, and at least one where $i \neq j$. You notice that you always get the same value of the (signed) determinant.
(c) Count the spanning trees of K_{3} directly in the graph. Compare with (b). They ought to be equal; if not, did you make a mistake?

Exercise MT.2. (a) Find the adjacency and Kirchhoff matrices of C_{4}, the cycle of length 4.
(b) Try several combinations of row and column deletions and find their determinants, i.e., $(-1)^{i+j} \operatorname{det} K\left(C_{4}\right)_{i j}$ for several combinations of i and j. Try at least one case where $i=j$, and at least one where $i \neq j$. You notice that you always get the same value of the (signed) determinant.
(c) Count the spanning trees of C_{4} directly in the graph. Compare with (b).

They ought to be equal; if not, did you make a mistake? The most likely mistake is to evaluate a 4×4 determinant incorrectly. Make sure you know how to do it.

Exercise MT.3. Do the same for K_{4}.
(a) Find $A\left(K_{4}\right), D\left(K_{4}\right)$, and $K\left(K_{4}\right)$.
(b) Write out $K\left(K_{4}\right)_{i i}$ for one choice of i, and evaluate its determinant by using row and column operations to simplify the matrix.
(c) Does your determinant agree with Cayley's formula $s\left(K_{4}\right)=16$? If not, did you make a mistake?

Exercise MT.4. Do the same for K_{n}, in the following way:
(a) Find $A\left(K_{n}\right), D\left(K_{n}\right)$, and $K\left(K_{n}\right)$.
(b) Write out $K\left(K_{n}\right)_{i i}$ for one choice of i, and evaluate its determinant by using row and column operations to simplify the matrix.
(c) Does your determinant agree with Cayley's formula $s\left(K_{n}\right)=n^{n-2}$ (Theorem 5.2.1)? If you made no mistake, you have a proof of Cayley's formula by matrix theory.

Exercise MT.5. Do parts (a, b, c) from Exercise MT. 4 for the complete bipartite graph $K_{m, n}$.

Does your result agree with Theorems 5.3.1 $(m=2)$ and 5.3.2 $(m=3)$?

