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Chapter 5 gives formulas for the number of spanning trees in some graphs. There is a
remarkable formula for the number of spanning trees in any graph. It involves a matrix
associated with a graph.

Definition MT.1. The adjacency matrix of a graph G with vertex set V = {v1, v2, . . . , vp}
is the p× p matrix A(G) = (aij) where

aij =

{
1 if vi and vj are adjacent,

0 if vi and vj are not adjacent.

In particular, the diagonal is all 0, since vi is not adjacent to itself in a graph.

The adjacency matrix is a symmetric matrix; therefore, by the diagonalization theorem of
symmetric matrices, it has all real eigenvalues. We won’t go into eigenvalues of adjacency
matrices, but there is a lot of research on them right up to now.

Definition MT.2. The degree matrix of G is the p× p matrix D(G) with the degree of vi

on the diagonal in row and column i, and with 0’s off the diagonal.

The next matrix is the one we are really interested in.

Definition MT.3. The Kirchhoff matrix of G is the matrix K(G) = D(G)− A(G).

Example MT.1. Let G = K4 \ v2v4. Then

A(G) =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

 , D(G) =


3 0 0 0
0 2 0 0
0 0 3 0
0 0 0 2

 , K(G) =


3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2

 .
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Figure MT.1. K4 \ v2v4

Theorem MT.1. The determinant of the Kirchhoff matrix is zero: det K(G) = 0.

Proof. The sum of the entries in row i of the adjacency matrix A(G) is deg vi, by the definition
of degree. Therefore, in K(G), the sum of the entries in row i is − deg vi + deg vi = 0. �
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This is not why the Kirchhoff matrix is interesting. Let’s delete one row and one column
from it and then take the determinant. We call this matrix Kij, if row i and column j are
deleted. For example:

Example MT.2. Apply that procedure to Example MT.1. Let’s delete row 1 and column
1.

K(G)11 =

 2 −1 0
−1 3 −1
0 −1 2

 , det K(G)11 =

∣∣∣∣∣∣
2 −1 0
−1 3 −1
0 −1 2

∣∣∣∣∣∣ = (12 + 0 + 0)− (2 + 2 + 0) = 8.

Another way to do it:

K(G)13 =

−1 2 0
−1 −1 −1
−1 0 2

 , det K(G)13 =

∣∣∣∣∣∣
−1 2 0
−1 −1 −1
−1 0 2

∣∣∣∣∣∣ = (2 + 2 + 0)− (0− 4 + 0) = 8.

Now count the spanning trees in G. Do you get 8?

Theorem MT.2. For any i, j ∈ {1, 2, . . . , p}, the value of (−1)i+j det K(G)ij is the number
of spanning trees in G.

I will not prove this theorem. It involves factoring the Kirchhoff matrix into a product
H(G)H(G)T (where H(G) is a matrix called the incidence matrix of G), a matrix theorem
called the Cauchy–Binet Theorem that gives a formula for the determinant of a product of
the form HHT (where H is any matrix), and some clever analysis of graph matrices.

Exercise MT.1. (a) Find the adjacency and Kirchhoff matrices of K3.
(b) Try several combinations of row and column deletions and find their determinants

(with the sign factor), i.e., (−1)i+j det K(K3)ij for several combinations of i and j. Try at
least one case where i = j, and at least one where i 6= j. You notice that you always get the
same value of the (signed) determinant.

(c) Count the spanning trees of K3 directly in the graph. Compare with (b). They ought
to be equal; if not, did you make a mistake?

Exercise MT.2. (a) Find the adjacency and Kirchhoff matrices of C4, the cycle of length
4.

(b) Try several combinations of row and column deletions and find their determinants, i.e.,
(−1)i+j det K(C4)ij for several combinations of i and j. Try at least one case where i = j,
and at least one where i 6= j. You notice that you always get the same value of the (signed)
determinant.

(c) Count the spanning trees of C4 directly in the graph. Compare with (b).
They ought to be equal; if not, did you make a mistake? The most likely mistake is to

evaluate a 4× 4 determinant incorrectly. Make sure you know how to do it.

Exercise MT.3. Do the same for K4.
(a) Find A(K4), D(K4), and K(K4).
(b) Write out K(K4)ii for one choice of i, and evaluate its determinant by using row and

column operations to simplify the matrix.
(c) Does your determinant agree with Cayley’s formula s(K4) = 16? If not, did you make

a mistake?
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Exercise MT.4. Do the same for Kn, in the following way:
(a) Find A(Kn), D(Kn), and K(Kn).
(b) Write out K(Kn)ii for one choice of i, and evaluate its determinant by using row and

column operations to simplify the matrix.
(c) Does your determinant agree with Cayley’s formula s(Kn) = nn−2 (Theorem 5.2.1)?
If you made no mistake, you have a proof of Cayley’s formula by matrix theory.

Exercise MT.5. Do parts (a, b, c) from Exercise MT.4 for the complete bipartite graph
Km,n.

Does your result agree with Theorems 5.3.1 (m = 2) and 5.3.2 (m = 3)?
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