
Final Exam—Math 381—Spring 2021
May 19–26, 2021
Grading Guide

The 190 exam points, not counting bonus points, will be scaled to 150 course points.

(1) (10 points) Let G be a connected graph. Prove G has a bridge if and only if not
every edge is in a cycle. Use the book’s definition of a bridge (page 44).

Solution. I will prove that an edge is a bridge if and only if it is not in any cycle.
That’s essentially the same question. Note that there are two things to prove here.

(I) If e is a bridge, it is not in any cycle. Equivalently (by contrapositive), if e is
in a cycle, it is not a bridge.

(II) If e is not in a cycle, it is a bridge. Equivalently (by contrapositive), if e is not
a bridge, it is in a cycle.

Proof of (I). Suppose e = uv is a bridge in G. Then there is no uv-path in G− e,
because G − e is disconnected. [N.B. A very rigorous proof would prove this, but I
don’t expect it for full credit. See (Ia).] Now suppose for contradiction that e is in a
cycle C. Then C− e is a path between u and v, giving us a contradiction. Therefore,
a bridge cannot belong to a cycle.

Proof of (II). Suppose e = uv is not a bridge. I will prove it belongs to a cycle. If
e is not a bridge, then G− e is connected, so (by the definition of connection) there
is a uv-path in G− e. That path together with e makes a cycle in G that contains e.

(Ia) (This will show you how much we need for a really solid proof.) For the
missing part, we have to prove there is no uv-path in G − e. Suppose there were
such a path, call it P . We prove G − e would be connected using the definition of
connection. We want to prove that for any two vertices, x and y, there is an xy-path
in G− e. We know there is an xy-path Pxy in G, since G is connected. If e is not in
Pxy, then x and y are connected by a path in G− e. If e is in Pxy, then (by labeling
x, y suitably) we can assume Pxy consists of a path Pxu from x to u, then edge e, then
a path Pvy from v to y. Now, replace e in this path by Puv, so we get a walk (not
necessarily a path) Wxy from x to y that consists of Pxu, then Puv, then Pvy. Now, by
the Connection Theorem on the announcements page, the existence of Wxy in G− e
implies the existence of an xy-path Qxy in G− e. We have proved that every pair of
vertices in G− e is joined by a path. That is the definition of G− e being connected.
But that contradicts the assumption that e is a bridge. Therefore, no uv-path exists
in G− e, which means there cannot be a cycle C in G that contains e.

Grading rubric.
5 pts. (I)
3 pts. How does the cycle enter into this reasoning?
2 pts. “Any edge in a cycle of G is not a bridge.” It is not a bridge of the cycle, but
that doesn’t prove it is not a bridge of G.
0 pts. Vagueness.
5 pts. (II)
1 pts. Pick e = uv that is not in a cycle. Because e is not in a cycle, there is no
uv-path in G − e. [Why not? That is the key point.] Thus, G − e is disconnected
so e is a bridge.
0 pts. Vagueness.
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(2) (10 points) A graph R is 2k-regular and has no 1-factor (where k is an integer ≥ 2).
Prove that its edge chromatic number is 2k + 1.

Solution. Step 1. Suppose by way of contradiction that R is edge 2k-colorable.
Color the edges in 2k colors. Each vertex has 2k incident edges, so there must be
one of each color. Therefore, the set of edges of color 1 must have degree 1 at every
vertex of R, and the same for all the other colors. That is, the set of edges of any
one color is a 1-factor. But I said the poor graph R lacks a 1-factor, so we have a
contradiction. It follows that χ′(R) > 2k.

Alternative Step 1. Suppose by way of contradiction there is an edge coloring in
2k edges. q = 1

2
(p · 2k) = pk so the average number of edges per color is q/2k = p/2.

There must be a color with at least the average number of edges. A color with p/2
edges uses all p vertices, so it can’t have more edges; therefore, it uses all p vertices.
That means the edges of this color are a 1-factor. But there is no 1-factor. So there
can’t be any coloring using 2k colors.

Step 2. By Vizing’s theorem, χ′(R) = 2k or 2k+1, so we conclude it equals 2k+1.
[There is nothing special about even degree 2k. I could have said r-regular where

r ≥ 2, allowing odd degree; the same proof works.]
Grading rubric.

6 pts. for not explaining exactly how a 1-factor is involved.
2 pts. for stating Vizing,
−2 pts. for only one graph.
2 pts. for complete graphs only.
−2 pts. for using turning trick.

(3) (10 points) Show that the line graph of a connected cubic graph G is conservative.
Solution. (I made a mistake here.)
The line graph L(G) of G is connected and 4-regular. Theorem 3.1.4 tells us it

decomposes into two 2-factors. If the 2-factors are each a single cycle, Theorem 6.2.1
tells us the line graph is conservative. If not, however, then there is no theorem that
can be applied.

Grading rubric.
10 pts. Noticing all those observations.
Bonus pts. if you go beyond this solution.
8 pts. if you assume the 2-factors in Theorem 3.1.4 are Hamiltonian.
4 pts. if you don’t use 3.1.4 or a similar valid reason.
0 pts. Confused “conservative” with “connected”.
4 pts. for using 6.2.1 only on specific graphs.

(4) (5 points) Is there a magic labeling of K8? Don’t use any exercise in the book. Hint:
First find the magic sum.

Solution. The magic sum for Kn would be s = 1
n
(sum of vertex labels) = 1

n
· 2 ·

(sum of edge labels) = 2
n
(1 + 2 + · · · + q) = 2

n
q(q−1)

2
. For K8 this is s = 1

8
· 29 · 28 =

812/8 = 101.5. The magic sum has to be an integer, so there is no such magic
labeling.

(Magic squares are irrelevant.)
Grading rubric.

4 pts. for error like dividing by degree, but still disproved.
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2 pts. Summing the edge labels correctly,
5 pts. Forgetting to double label sum.

(5) (3 points) Find an antimagic labeling of K4.
Solution. One solution (of many): Label nonadjacent pairs of edges as follows:

1, 4 for the first pair, 2, 5 for the second, 3, 6 for the third.
Grading rubric.

0 pts. Not using edge labels 1, . . . , 6.
0 pts. Graph is not K4.

(6) (5 + 5 bonus points) Find a largest graph (the most edges) on 15 vertices, that has
no even cycles. (There are many; you only need to find one.) For bonus credit give
a proof.

Solution. t triangles attached to each other at single vertices in a connected graph
while making no other cycles (thus, in a tree-like manner) will use 2t + 1 vertices.
You should have 7 triangles and 21 edges.

This is the only way to maximize the number of edges. If you have a longer cycle
instead of a triangle, you’ll have fewer edges. If you have a cycle and additional edges
connecting vertices of the cycle, you will have an even cycle in there. If the triangles
are not connected in a tree-like pattern, you’ll have those additional edgers, so an
even cycle.

(There is different, very nice proof starting with a spanning tree of the 15 vertices
and adding edges so as to maximize the number of cycles while not creating even
cycles.)

Grading rubric.
2 bonus pts. for proof attempt using examples.
1 bonus pts. for noting why no edges can be added to your example. (Generously
allowed.)
3 bonus pts. for incomplete proof attempt using good general reasoning.
4 pts. for 20 edges.
3 pts. for 19 edges.
0 pts. if an even cycle.

(7) (35 points) For the labeled Petersen graph P (see my drawing; use the labels), answer
the following questions.

(a) (10 points) Does it have a Hamilton cycle?
Solution. No. There are several proofs, of which I present three and a half,
partly drawn from students’ solutions.
Direct proof 1: Try to construct a Hamilton cycle H. We know it must have

a “spoke” edge, so let’s assume H contains a1b1 and a1a2. (By symmetry of P ,
this covers all possible cases.) That rules out a1a5, which means H must contain
a5b5 and a5a4, since a5 is in H. Now, H must contain either a4a3 or a2a3, and
by the symmetry of both P and the partial H we alrealdy have, these are not
essentially different, so let’s say H contains a2a3. Then it cannot contain a2b2, so
it must contain b2b4 and b2b5 in order to pass through b2. Now H contains two
edges at b5 so it cannot contain b3b5; that implies the other two edges at b3 are
in H; they are b1b3 and a3b3. Oh, oh! H contains a 5-cycle, a1a2a3b3b1a1. That
means H can’t possibly be a Hamilton cycle.
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Direct proof 2: A Hamilton cycle H must contain a positive even number
of spoke edges in order to connect the inner and outer pentagons. Suppose H
contains four spoke edges, say all but a1b1. Then it must contain the path a5a1a2,
therefore not a2a3 or a5a4. That implies it contains the path b3a3a4b4. Since H
does not contain a1b1, it must contain the path b4b1b3, but this makes a 5-cycle
b4b1b3a3a4b4 in our Hamilton cycle, which is impossible. Thus, there cannot be a
Hamilton cycle.
Direct proof 3 outline: Suppose a cubic graph G of order 10 has a Hamilton

cycle H. Then G is constructed by taking a C10 and adding 5 edges, one at
each vertex. To get P we have to avoid having any 3-cycle or 4-cycle. This is
impossible (I omit that part of the proof; it’s not hard).
Indirect proof, using (d): P is cubic and has edge chromatic number χ′ = 4

from part (d) (if you found that). By Theorem 2.3.5, P has no Hamilton cycle.
Grading rubric.
5 pts. for assuming P is a snark, without proof.
1 pts. for answer with no or negligible proof.
5 pts. for a significant partial proof with much missing.

(b) (10 points) Does it have an Eulerian circuit?
Solution. No. All degrees are odd.
Grading rubric.
1 pts. No reason.

(c) (5 points) What is its clique number (the largest size of a clique)?
Solution. 2. There are no triangles (C3 = K3 subgraphs).

(d) (10 points) What is its edge chromatic number χ′(P )?
Solution. Direct proof: χ′(P ) ≥ 3 because P is 3-regular (or because P contains
a C5, which is not edge 2-colorable). We try to 3-color the edges of P . The
outer pentagon has to have three colors, which can only be in one way (up to the
rotational symmetry of the diagram), say color 1 on a1a2 and a3a4, color 2 on a2a3
and a4a5, and color 3 on a1a5. That forces the spoke edge colors; in particular, 1
on a1b1 and 3 on a3b3 and a4b4, which forces color 2 on b1b3 and b1b4. But wait!
b1b3 and b1b4 are adjacent, so the 3-coloring has led to a contradiction. We made
no arbitrary choices, so 3-coloring is impossible. By Vizing’s theorem, χ′(P ) = 4.
Indirect proof, using (a): Suppose P has an edge 3-coloring. Since P is 3-

regular, the set of edges with each color is a 1-factor. Delete these edges, leaving
a 2-factor with 10 edges and 2 colors. This 2-factor is not a Hamilton cycle, by
part (a), therefore it is the union of two or more cycles, but the girth is 5, so the
2-factor is a union of two 5-cycles. These 5-cycles can’t be colored in 2 colors, so
we have a contradiction. Therefore, χ′(P ) > 3. By Vizing’s theorem, χ′(P ) = 4.
Grading rubric.
2 pts. for only χ′(P ) ≥ 3.
2 pts. for only χ′(P ) ≤ 4.
4 pts. for only 3 ≤ χ′(P ) ≤ 4.
6 pts. for a significant partial proof with much missing.
8 pts. for most of a proof but with a significant gap.
0 pts. No reason.
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(8) (55 points) Solve the following problems for the complement P of the labeled Petersen
graph P (see my drawing).
Solution. If you assume HW # M6 is true without proof, I accept it for this

problem.
If you use the ij labeling of vertices, that is okay.
For completeness, I could prove M6 by making a drawing of L(K5) and showing that

it looks just like the Petersen graph (or vice versa). This implies that P = L(K5), so
I can use L(K5) in this problem. This means we have 10 vertices ij (meaning the set
{i, j} ⊂ {1, 2, 3, 4, 5}), corresponding to the edges of K5, and we have edges {ij, ik}
for any two j, k 6= i, derived from the adjacency of edges in K5. I will explain a cute
way to draw this in part (h).

(a) (5 points) Find the complement P of P . (A labeled picture will be a good
answer.)
Solution. A readable picture.
Grading rubric.
−1 pts. per 1 or 2 errors.

(b) (0 points) Find the degree of every vertex in P (this is to verify your complement).
Solution. 6. (If you don’t get 6 at every vertex, there is a mistake.)

Explanation: 9 − 3 = 6. The 9 is the degree of the complete graph K10 and
the 3 counts the edges of P , which are omitted.

(c) (5 points) Find the clique number (the largest size of a clique) for P .
Solution. The clique number ω(P ) = 4. The reason is that P = L(K5), so the
largest cliques are composed of the K5 edges incident with a single vertex. (The
only other cliques in a line graph come from triangles in the base graph, so they
give no clique larger than 3 vertices. I am not expecting you to prove that.)

Solution 2: You can find a K4 subgraph, so ω ≥ 4. Any clique can have at
most two vertices in the a’s and at most two in the b’s, so at most 4 vertices, so
ω ≤ 4. Therefore, ω = 4.
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Grading rubric.
2 pts. for 3 without disproof of 4.
4 pts. for 4 without a pretty good attempt to disprove 5.

(d) (10 points) Does P have the most possible edges for a graph with the same
clique number and the same number of vertices? (Use your clique number, even
if you’re not sure of it.)
Solution. By Turan’s theorem, the most edges for a graph of order p and
clique number 4 (so no K5 subgraph) is obtained by taking Kn1,n2,n3,n4 where
n1 + n2 + n3 + n4 = p and the ni’s are nearly equal. That means K3,3,2,2, which
has 3 · 7 + 3 · 4 + 2 · 2 = 37 edges. Our 6-regular graph has 1

2
(6p) = 30 edges. The

answer is No.
Solution 2: Find an edge you can add without changing ω. Any edge will

suffice, by the same reasoning as in (c2).
Grading rubric.
4 pts. Plausible but invalid method. E.g., adding a vertex to only one maximum
clique with one new edge.
0 pts. No relevant reason.

(e) (5 points) Find the girth g(P ).
Solution. g(P ) = 3 by the obvious existence of triangles.

(f) (10 points) Find the chromatic number χ(P ).
Solution. The easy method. The chromatic number of the line graph L(K5) is
the edge chromatic number of the base graph K5, which is 5 by Theorem 2.2.4.
Direct method (thanks to Zixiao Lin). A 4-clique implies χ(P ) ≥ 4. Try

coloring in 4 colors. Start with a 4-clique, say vertices a1, a2, b3, b4 colored 1, 2, 3, 4,
respectively. Of the remaining vertices, the three are nonadjacent to a1 form a
triangle, so only one remaining vertex can have color 1. Similarly, only one can
have color 2, likewise for color 3, likewise for color 4. That shows 4 colors do not
suffice. Then produce a 5-coloring to prove χ(P ) ≤ 5, thus = 5.
Grading rubric.
8 pts. for knowing how to find χ(G), if you made a minor mistake yielding a
wrong answer.
6 pts. for knowing how to find χ(G), if you did not cover all cases.
5 pts. for 4 ≤ χ ≤ 5 by coloring.
5 pts. for 4 ≤ χ ≤ 6 by coloring.
5 pts. for coloring without enough system, starting from ω, getting χ > 4.
−2 pts. for omitting χ ≥ your ω.
2 pts. for 4 ≤ χ ≤ 10.

(g) (10 points) Is P planar? Use any method.
Solution. Since P is 6-regular it has q = 1

2
(6p) = 3p. It cannot be planar,

because every planar graph has q ≤ 3p− 6.
Harder method (but not hard): Find a subdivision of K5 or of K3,3 in P .

Grading rubric.
5 pts. for alleged but incorrect subdivision.
0 pts. Guess.
2 pts. for claiming a K5 or K3,3 subgraph (not subdivided). There is none.
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(h) (10 points) Find the thickness θ(P ).
Solution. θ(P ) > 1 because the graph is nonplanar by part (g). A drawing can
prove θ(P ) ≤ 2, therefore the thickness is 2.
Drawing 1. I will describe a decomposition into two planar subgraphs that

doesn’t require a drawing.
The first subgraph G4 consists of all edges {ij, ik} with i, j, k < 5. This

subgraph is L(K4), which is K6 − (1-factor). It is easy to make a plane drawing.
The second subgraph G5 consists of all edges {5i, 5j} where i, j < 5 and

edges {5i, ij} where i, j < 5. The first edges give a K4 subgraph with ver-
tices 51, 52, 53, 54 and all edges. For any two of these vertices, 5i and 5j, there is
a vertex ij adjacent to both but not to any other vertex 5k. So, we draw a curve
from vertex 5i to 5j near the edge between them, and we put vertex ij in the
middle of this curve, making a triangle 5i, 5j, ij. This graph is planar because it
looks like K4 with doubled edges.

Every edge of L(K5) is in G4 or G5 but not both. Thus, L(K5) decomposes
into the two planar subgraphs G4 and G5.
Drawing 2. If the first planar subgraph is a 4-clique, the remainder can be

drawn as planar overlapping triangles.
Grading rubric.
10 pts. for 2 ≤ θ ≤ 2.
9 pts. for 2 ≤ θ ≤ 3. (E.g., from θ(P ) ≤ θ(K10) = 3 by Theorem 9.2.3.)
−n pts. for major errors in decomposing L(K5) into planar subgraphs.
2 pts. for θ ≥ 2. (So, −2 pts. for omitting θ ≥ 2 from a solution.)
2 pts. for assuming θ = 2 with no reasons, if (g) solved.

(9) (5+ points) For the labeled Petersen graph P (see my drawing):

(a) (5 points) Find an automorphism (an isomorphism with itself) that carries vertex
a1 to b2.
Solution. This is a function f : V (P )→ V (P ). One solution is

v = a1 a2 a3 a4 a5 b1 b2 b3 b4 b5
f(v) = b2 b4 b1 b3 b5 a2 a4 a1 a3 a5

You can describe f with a diagram showing the result of the automorphism.
Grading rubric.
4 pts. for f(a1) = b1. (Too easy.)
−1 pts. for f−1.

(b) (Bonus 5 points) How many such automorphisms are there?
Solution. The three neighbors of a1 must be mapped to the neighbors of b2.
The way you do this is arbitrary, so there are 3! = 6 ways to do it. Once you’ve
chosen these values of f , you have 2 choices for f(b3), namely the two neighbors
of f(b1). All the rest is determined, as you can see by looking at the graph. So
there are 6 · 2 = 12 automorphisms.
Grading rubric.
2 pts. for 6 automorphisms. (This is the easy part.)
0 pts. for appealing to rotations and inversions. The diagram is not the graph.
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(10) (10 points) Use Kruskal’s algorithm to find a minimum-weight spanning tree in the
graph G10.
Solution. Kruskal’s algorithm picks the edges in the following order:

(1) ut,
(2) then vz (or the reverse),
(3) then yz,
(4) then wx,
(5) then uv (or the reverse),
(6) then reject uy because it would form a cycle,
(7) then pick wy (or xv, depending on the first one you looked at),
(8) then you have a spanning tree so you can stop.

Step (6) is important: it’s part of the algorithm. The weight is 25.
Grading rubric.

7 pts. for using the other algorithm (tree-growth).
7 pts. if not mentioning unused edges that are considered in the algorithm.
5 pts. if not clearly stating the order of considering edges, including unused edges.
3 pts. for not presenting the steps.
0 pts. for no or non-minimum tree.
−1 pts. for not following the edge order, if you give one in advance.

G10

(11) (42 points) For the graph G11, get the best results you can.

(a) (10 points) Prove it is nonplanar. You must use Kuratowski’s Theorem.
Solution. A clearly labeled drawing of a subdivision of K5 or K3,3. (Interesting
fact: G11 has no subgraph that is a subdivision of K5.)
Grading rubric.
2 pts. for alleged but incorrect subdivision.
2 pts. for claiming a K5 or K3,3 subgraph (not subdivided). There is none.

(b) (10 points) What is its crossing number cr(G11)?
Solution. We know cr(G11) > 0 by (a) and cr(G11) ≤ 2 by the drawing. There-
fore cr(G11) = 1 or 2. (I believe I can prove it is 2, but it’s a bit complicated. I
will look at this again later.)
Grading rubric.
6 pts. for cr(G11) > 0 by (a), and claiming cr(G11) = 2 because of a plausible
wrong reason, e.g., you tried several drawings and could not get 1. “That is not
logical, Captain.”
3 (−2 if omitted) pts. cr(G11) > 0 by (a).
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3 pts. cr(G11) > 0 by (a); > 1 for a reason that doesn’t make sense to me or is
plainly wrong.

(c) (10 points) What is its splitting number σ(G11)?
Solution. By nonplanarity, σ(G11) ≥ 1. One splitting of g (split off the edge gj
to become g′j) suffices to make G11 planar; so σ(G11) ≤ 1. A different splitting
is of f (split off edges fh and fi). Conclusion: σ(G11) = 1.
Grading rubric.
3 (−2 if omitted) pts. σ(G11) > 0 by (a).
7 pts. for σ(G11) > 0 by (a), and = 2 by two splittings.

(d) (10 points) What is its thickness θ(G11)?
Solution. θ(G11) > 1 by (a). It’s easy to decompose G11 into two planar
subgraphs, so θ(G11) = 2.
Grading rubric.
3 (−2 if omitted) pts. θ(G11) > 1 by (a).
−1 pts. per decomposition error.

(e) (2 points) Is it an Earth–Moon graph?
Solution. Yes, because the thickness is 2. Draw one planar subgraph on each
“planet”.
Grading rubric.
0 pts. for taking “countries” of the nonplanar graph.
1 pts. if no reason.

G11
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