FINAL EXAM—MATH 381—Spring 2021 May 19–26, 2021 Grading Guide

The 190 exam points, not counting bonus points, will be scaled to 150 course points.

(1) (10 points) Let G be a connected graph. Prove G has a bridge if and only if not every edge is in a cycle. Use the book's definition of a bridge (page 44).

Solution. I will prove that an edge is a bridge if and only if it is not in any cycle. That's essentially the same question. Note that there are two things to prove here.

- (I) If e is a bridge, it is not in any cycle. Equivalently (by contrapositive), if e is in a cycle, it is not a bridge.
- (II) If e is not in a cycle, it is a bridge. Equivalently (by contrapositive), if e is not a bridge, it is in a cycle.

Proof of (I). Suppose e = uv is a bridge in G. Then there is no uv-path in G - e, because G - e is disconnected. [N.B. A very rigorous proof would prove this, but I don't expect it for full credit. See (Ia).] Now suppose for contradiction that e is in a cycle C. Then C - e is a path between u and v, giving us a contradiction. Therefore, a bridge cannot belong to a cycle.

Proof of (II). Suppose e = uv is not a bridge. I will prove it belongs to a cycle. If e is not a bridge, then G - e is connected, so (by the definition of connection) there is a uv-path in G - e. That path together with e makes a cycle in G that contains e.

(Ia) (This will show you how much we need for a really solid proof.) For the missing part, we have to prove there is no uv-path in G - e. Suppose there were such a path, call it P. We prove G - e would be connected using the definition of connection. We want to prove that for any two vertices, x and y, there is an xy-path in G - e. We know there is an xy-path P_{xy} in G, since G is connected. If e is not in P_{xy} , then x and y are connected by a path in G - e. If e is in P_{xy} , then (by labeling x, y suitably) we can assume P_{xy} consists of a path P_{xu} from x to u, then edge e, then a path P_{vy} from v to y. Now, replace e in this path by P_{uv} , so we get a walk (not necessarily a path) W_{xy} from x to y that consists of P_{xu} , then P_{uv} , then P_{vy} . Now, by the Connection Theorem on the announcements page, the existence of W_{xy} in G - e implies the existence of an xy-path Q_{xy} in G - e. We have proved that every pair of vertices in G - e is joined by a path. That is the definition of G - e being connected. But that contradicts the assumption that e is a bridge. Therefore, no uv-path exists in G - e, which means there cannot be a cycle C in G that contains e.

Grading rubric.

5 pts. (I)

3 pts. How does the cycle enter into this reasoning?

2 pts. "Any edge in a cycle of G is not a bridge." It is not a bridge of the cycle, but that doesn't prove it is not a bridge of G.

 θ pts. Vagueness.

5 pts. (II)

1 pts. Pick e = uv that is not in a cycle. Because e is not in a cycle, there is no uv-path in G - e. [Why not? That is the key point.] Thus, G - e is disconnected so e is a bridge.

 θ pts. Vagueness.

(2) (10 points) A graph R is 2k-regular and has no 1-factor (where k is an integer ≥ 2). Prove that its edge chromatic number is 2k + 1.

Solution. Step 1. Suppose by way of contradiction that R is edge 2k-colorable. Color the edges in 2k colors. Each vertex has 2k incident edges, so there must be one of each color. Therefore, the set of edges of color 1 must have degree 1 at every vertex of R, and the same for all the other colors. That is, the set of edges of any one color is a 1-factor. But I said the poor graph R lacks a 1-factor, so we have a contradiction. It follows that $\chi'(R) > 2k$.

Alternative Step 1. Suppose by way of contradiction there is an edge coloring in 2k edges. $q = \frac{1}{2}(p \cdot 2k) = pk$ so the average number of edges per color is q/2k = p/2. There must be a color with at least the average number of edges. A color with p/2 edges uses all p vertices, so it can't have more edges; therefore, it uses all p vertices. That means the edges of this color are a 1-factor. But there is no 1-factor. So there can't be any coloring using 2k colors.

Step 2. By Vizing's theorem, $\chi'(R) = 2k$ or 2k+1, so we conclude it equals 2k+1. [There is nothing special about even degree 2k. I could have said *r*-regular where r > 2, allowing odd degree; the same proof works.]

Grading rubric.

6 pts. for not explaining exactly how a 1-factor is involved.

2 pts. for stating Vizing,

-2 pts. for only one graph.

2 pts. for complete graphs only.

-2 pts. for using turning trick.

(3) (10 points) Show that the line graph of a connected cubic graph G is conservative. Solution. (I made a mistake here.)

The line graph L(G) of G is connected and 4-regular. Theorem 3.1.4 tells us it decomposes into two 2-factors. If the 2-factors are each a single cycle, Theorem 6.2.1 tells us the line graph is conservative. If not, however, then there is no theorem that can be applied.

Grading rubric.

10 pts. Noticing all those observations.

Bonus pts. if you go beyond this solution.

- 8 pts. if you assume the 2-factors in Theorem 3.1.4 are Hamiltonian.
- 4 pts. if you don't use 3.1.4 or a similar valid reason.
- 0 pts. Confused "conservative" with "connected".
- 4 pts. for using 6.2.1 only on specific graphs.
- (4) (5 points) Is there a magic labeling of K_8 ? Don't use any exercise in the book. Hint: First find the magic sum.

Solution. The magic sum for K_n would be $s = \frac{1}{n}(\text{sum of vertex labels}) = \frac{1}{n} \cdot 2 \cdot (\text{sum of edge labels}) = \frac{2}{n}(1+2+\cdots+q) = \frac{2}{n}\frac{q(q-1)}{2}$. For K_8 this is $s = \frac{1}{8} \cdot 29 \cdot 28 = 812/8 = 101.5$. The magic sum has to be an integer, so there is no such magic labeling.

(Magic squares are irrelevant.)

Grading rubric.

4 pts. for error like dividing by degree, but still disproved.

- 2 pts. Summing the edge labels correctly,
- 5 pts. Forgetting to double label sum.
- (5) (3 points) Find an antimagic labeling of K₄.
 Solution. One solution (of many): Label nonadjacent pairs of edges as follows:
 1, 4 for the first pair, 2, 5 for the second, 3, 6 for the third.
 Grading rubric.
 - $0 \ pts.$ Not using edge labels $1, \ldots, 6$.
 - 0 pts. Graph is not K_4 .
- (6) (5 + 5 bonus points) Find a largest graph (the most edges) on 15 vertices, that has no even cycles. (There are many; you only need to find one.) For bonus credit give a proof.

Solution. t triangles attached to each other at single vertices in a connected graph while making no other cycles (thus, in a tree-like manner) will use 2t + 1 vertices. You should have 7 triangles and 21 edges.

This is the only way to maximize the number of edges. If you have a longer cycle instead of a triangle, you'll have fewer edges. If you have a cycle and additional edges connecting vertices of the cycle, you will have an even cycle in there. If the triangles are not connected in a tree-like pattern, you'll have those additional edgers, so an even cycle.

(There is different, very nice proof starting with a spanning tree of the 15 vertices and adding edges so as to maximize the number of cycles while not creating even cycles.)

Grading rubric.

2 bonus pts. for proof attempt using examples.

1 bonus pts. for noting why no edges can be added to your example. (Generously allowed.)

- 3 bonus pts. for incomplete proof attempt using good general reasoning.
- 4 pts. for 20 edges.
- 3 pts. for 19 edges.

 θ pts. if an even cycle.

- (7) (35 points) For the labeled Petersen graph P (see my drawing; use the labels), answer the following questions.
 - (a) (10 points) Does it have a Hamilton cycle?

Solution. No. There are several proofs, of which I present three and a half, partly drawn from students' solutions.

Direct proof 1: Try to construct a Hamilton cycle H. We know it must have a "spoke" edge, so let's assume H contains a_1b_1 and a_1a_2 . (By symmetry of P, this covers all possible cases.) That rules out a_1a_5 , which means H must contain a_5b_5 and a_5a_4 , since a_5 is in H. Now, H must contain either a_4a_3 or a_2a_3 , and by the symmetry of both P and the partial H we alrealdy have, these are not essentially different, so let's say H contains a_2a_3 . Then it cannot contain a_2b_2 , so it must contain b_2b_4 and b_2b_5 in order to pass through b_2 . Now H contains two edges at b_5 so it cannot contain b_3b_5 ; that implies the other two edges at b_3 are in H; they are b_1b_3 and a_3b_3 . Oh, oh! H contains a 5-cycle, $a_1a_2a_3b_3b_1a_1$. That means H can't possibly be a Hamilton cycle. Direct proof 2: A Hamilton cycle H must contain a positive even number of spoke edges in order to connect the inner and outer pentagons. Suppose Hcontains four spoke edges, say all but a_1b_1 . Then it must contain the path $a_5a_1a_2$, therefore not a_2a_3 or a_5a_4 . That implies it contains the path $b_3a_3a_4b_4$. Since Hdoes not contain a_1b_1 , it must contain the path $b_4b_1b_3$, but this makes a 5-cycle $b_4b_1b_3a_3a_4b_4$ in our Hamilton cycle, which is impossible. Thus, there cannot be a Hamilton cycle.

Direct proof 3 outline: Suppose a cubic graph G of order 10 has a Hamilton cycle H. Then G is constructed by taking a C_{10} and adding 5 edges, one at each vertex. To get P we have to avoid having any 3-cycle or 4-cycle. This is impossible (I omit that part of the proof; it's not hard).

Indirect proof, using (d): P is cubic and has edge chromatic number $\chi' = 4$ from part (d) (if you found that). By Theorem 2.3.5, P has no Hamilton cycle. Grading rubric.

5 pts. for assuming P is a snark, without proof.

1 pts. for answer with no or negligible proof.

5 pts. for a significant partial proof with much missing.

(b) (10 points) Does it have an Eulerian circuit?
 Solution. No. All degrees are odd.
 Grading rubric.

1 pts. No reason.

- (c) (5 points) What is its clique number (the largest size of a clique)? Solution. 2. There are no triangles ($C_3 = K_3$ subgraphs).
- (d) (10 points) What is its edge chromatic number $\chi'(P)$?

Solution. Direct proof: $\chi'(P) \geq 3$ because P is 3-regular (or because P contains a C_5 , which is not edge 2-colorable). We try to 3-color the edges of P. The outer pentagon has to have three colors, which can only be in one way (up to the rotational symmetry of the diagram), say color 1 on a_1a_2 and a_3a_4 , color 2 on a_2a_3 and a_4a_5 , and color 3 on a_1a_5 . That forces the spoke edge colors; in particular, 1 on a_1b_1 and 3 on a_3b_3 and a_4b_4 , which forces color 2 on b_1b_3 and b_1b_4 . But wait! b_1b_3 and b_1b_4 are adjacent, so the 3-coloring has led to a contradiction. We made no arbitrary choices, so 3-coloring is impossible. By Vizing's theorem, $\chi'(P) = 4$.

Indirect proof, using (a): Suppose P has an edge 3-coloring. Since P is 3-regular, the set of edges with each color is a 1-factor. Delete these edges, leaving a 2-factor with 10 edges and 2 colors. This 2-factor is not a Hamilton cycle, by part (a), therefore it is the union of two or more cycles, but the girth is 5, so the 2-factor is a union of two 5-cycles. These 5-cycles can't be colored in 2 colors, so we have a contradiction. Therefore, $\chi'(P) > 3$. By Vizing's theorem, $\chi'(P) = 4$. Grading rubric.

2 pts. for only $\chi'(P) \geq 3$.

- 2 pts. for only $\chi'(P) \leq 4$.
- 4 pts. for only $3 \le \chi'(P) \le 4$.
- 6 pts. for a significant partial proof with much missing.
- 8 pts. for most of a proof but with a significant gap.
- θ pts. No reason.

(8) (55 points) Solve the following problems for the complement \overline{P} of the labeled Petersen graph P (see my drawing).

Solution. If you assume HW # M6 is true without proof, I accept it for this problem.

If you use the *ij* labeling of vertices, that is okay.

For completeness, I could prove M6 by making a drawing of $L(K_5)$ and showing that it looks just like the Petersen graph (or vice versa). This implies that $\overline{P} = L(K_5)$, so I can use $L(K_5)$ in this problem. This means we have 10 vertices ij (meaning the set $\{i, j\} \subset \{1, 2, 3, 4, 5\}$), corresponding to the edges of K_5 , and we have edges $\{ij, ik\}$ for any two $j, k \neq i$, derived from the adjacency of edges in K_5 . I will explain a cute way to draw this in part (h).

(a) (5 points) Find the complement \overline{P} of P. (A labeled picture will be a good answer.)

Solution. A readable picture. Grading rubric.

-1 pts. per 1 or 2 errors.

- (b) (0 points) Find the degree of every vertex in \overline{P} (this is to verify your complement). Solution. 6. (If you don't get 6 at every vertex, there is a mistake.) Explanation: 9 - 3 = 6. The 9 is the degree of the complete graph K_{10} and the 3 counts the edges of P, which are omitted.
- (c) (5 points) Find the clique number (the largest size of a clique) for \overline{P} . **Solution.** The clique number $\omega(\overline{P}) = 4$. The reason is that $\overline{P} = L(K_5)$, so the largest cliques are composed of the K_5 edges incident with a single vertex. (The only other cliques in a line graph come from triangles in the base graph, so they give no clique larger than 3 vertices. I am not expecting you to prove that.)

Solution 2: You can find a K_4 subgraph, so $\omega \ge 4$. Any clique can have at most two vertices in the *a*'s and at most two in the *b*'s, so at most 4 vertices, so $\omega \le 4$. Therefore, $\omega = 4$.

Grading rubric.

2 pts. for 3 without disproof of 4.

4 pts. for 4 without a pretty good attempt to disprove 5.

(d) (10 points) Does \overline{P} have the most possible edges for a graph with the same clique number and the same number of vertices? (Use your clique number, even if you're not sure of it.)

Solution. By Turan's theorem, the most edges for a graph of order p and clique number 4 (so no K_5 subgraph) is obtained by taking K_{n_1,n_2,n_3,n_4} where $n_1 + n_2 + n_3 + n_4 = p$ and the n_i 's are nearly equal. That means $K_{3,3,2,2}$, which has $3 \cdot 7 + 3 \cdot 4 + 2 \cdot 2 = 37$ edges. Our 6-regular graph has $\frac{1}{2}(6p) = 30$ edges. The answer is No.

Solution 2: Find an edge you can add without changing ω . Any edge will suffice, by the same reasoning as in (c2).

Grading rubric.

 $4\ pts.$ Plausible but invalid method. E.g., adding a vertex to only one maximum clique with one new edge.

 θ pts. No relevant reason.

- (e) (5 points) Find the girth g(P). Solution. $g(\overline{P}) = 3$ by the obvious existence of triangles.
- (f) (10 points) Find the chromatic number $\chi(\overline{P})$.

Solution. The easy method. The chromatic number of the line graph $L(K_5)$ is the edge chromatic number of the base graph K_5 , which is 5 by Theorem 2.2.4.

Direct method (thanks to Zixiao Lin). A 4-clique implies $\chi(P) \geq 4$. Try coloring in 4 colors. Start with a 4-clique, say vertices a_1, a_2, b_3, b_4 colored 1, 2, 3, 4, respectively. Of the remaining vertices, the three are nonadjacent to a_1 form a triangle, so only one remaining vertex can have color 1. Similarly, only one can have color 2, likewise for color 3, likewise for color 4. That shows 4 colors do not suffice. Then produce a 5-coloring to prove $\chi(\overline{P}) \leq 5$, thus = 5.

Grading rubric.

8 pts. for knowing how to find $\chi(G)$, if you made a minor mistake yielding a wrong answer.

- 6 pts. for knowing how to find $\chi(G)$, if you did not cover all cases.
- 5 pts. for $4 \le \chi \le 5$ by coloring.
- 5 pts. for $4 \le \chi \le 6$ by coloring.
- 5 pts. for coloring without enough system, starting from ω , getting $\chi > 4$.
- -2 pts. for omitting $\chi \geq your \omega$.

2 pts. for $4 \le \chi \le 10$.

(g) (10 points) Is \overline{P} planar? Use any method.

Solution. Since \overline{P} is 6-regular it has $q = \frac{1}{2}(6p) = 3p$. It cannot be planar, because every planar graph has $q \leq 3p - 6$.

Harder method (but not hard): Find a subdivision of K_5 or of $K_{3,3}$ in P. Grading rubric.

5 pts. for alleged but incorrect subdivision.

 θ pts. Guess.

2 pts. for claiming a K_5 or $K_{3,3}$ subgraph (not subdivided). There is none.

(h) (10 points) Find the thickness $\theta(\overline{P})$.

Solution. $\theta(\overline{P}) > 1$ because the graph is nonplanar by part (g). A drawing can prove $\theta(\overline{P}) \leq 2$, therefore the thickness is 2.

Drawing 1. I will describe a decomposition into two planar subgraphs that doesn't require a drawing.

The first subgraph G_4 consists of all edges $\{ij, ik\}$ with i, j, k < 5. This subgraph is $L(K_4)$, which is $K_6 - (1$ -factor). It is easy to make a plane drawing.

The second subgraph G_5 consists of all edges $\{5i, 5j\}$ where i, j < 5 and edges $\{5i, ij\}$ where i, j < 5. The first edges give a K_4 subgraph with vertices 51, 52, 53, 54 and all edges. For any two of these vertices, 5i and 5j, there is a vertex ij adjacent to both but not to any other vertex 5k. So, we draw a curve from vertex 5i to 5j near the edge between them, and we put vertex ij in the middle of this curve, making a triangle 5i, 5j, ij. This graph is planar because it looks like K_4 with doubled edges.

Every edge of $L(K_5)$ is in G_4 or G_5 but not both. Thus, $L(K_5)$ decomposes into the two planar subgraphs G_4 and G_5 .

Drawing 2. If the first planar subgraph is a 4-clique, the remainder can be drawn as planar overlapping triangles.

Grading rubric.

10 pts. for $2 \le \theta \le 2$.

9 pts. for $2 \le \theta \le 3$. (E.g., from $\theta(\overline{P}) \le \theta(K_{10}) = 3$ by Theorem 9.2.3.) -n pts. for major errors in decomposing $L(K_5)$ into planar subgraphs. 2 pts. for $\theta \ge 2$. (So, -2 pts. for omitting $\theta \ge 2$ from a solution.) 2 pts. for assuming $\theta = 2$ with no reasons, if (g) solved.

- (9) (5+ points) For the labeled Petersen graph P (see my drawing):
 - (a) (5 points) Find an automorphism (an isomorphism with itself) that carries vertex a_1 to b_2 .

Solution. This is a function $f: V(P) \to V(P)$. One solution is

 $v = a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ b_1 \ b_2 \ b_3 \ b_4 \ b_5$

 $f(v) = b_2 \quad b_4 \quad b_1 \quad b_3 \quad b_5 \quad a_2 \quad a_4 \quad a_1 \quad a_3 \quad a_5$

You can describe f with a diagram showing the result of the automorphism. Grading rubric.

4 pts. for $f(a_1) = b_1$. (Too easy.) -1 pts. for f^{-1} .

(b) (Bonus 5 points) How many such automorphisms are there?

Solution. The three neighbors of a_1 must be mapped to the neighbors of b_2 . The way you do this is arbitrary, so there are 3! = 6 ways to do it. Once you've chosen these values of f, you have 2 choices for $f(b_3)$, namely the two neighbors of $f(b_1)$. All the rest is determined, as you can see by looking at the graph. So there are $6 \cdot 2 = 12$ automorphisms.

Grading rubric.

2 pts. for 6 automorphisms. (This is the easy part.)

0 pts. for appealing to rotations and inversions. The diagram is not the graph.

- (10) (10 points) Use Kruskal's algorithm to find a minimum-weight spanning tree in the graph G_{10} .
 - **Solution.** Kruskal's algorithm picks the edges in the following order:
 - $(1) \, ut.$
 - (2) then vz (or the reverse),
 - (3) then yz.
 - (4) then wx,
 - (5) then uv (or the reverse),
 - (6) then reject uy because it would form a cycle,
 - (7) then pick wy (or xv, depending on the first one you looked at),
 - (8) then you have a spanning tree so you can stop.

Step (6) is important: it's part of the algorithm. The weight is 25.

Grading rubric.

- 7 pts. for using the other algorithm (tree-growth).
- 7 pts. if not mentioning unused edges that are considered in the algorithm.
- 5 pts. if not clearly stating the order of considering edges, including unused edges.
- 3 pts. for not presenting the steps.
- θ pts. for no or non-minimum tree.
- -1 pts. for not following the edge order, if you give one in advance.

- (11) (42 points) For the graph G_{11} , get the best results you can.
 - (a) (10 points) Prove it is nonplanar. You must use Kuratowski's Theorem. **Solution.** A clearly labeled drawing of a subdivision of K_5 or $K_{3,3}$. (Interesting fact: G_{11} has no subgraph that is a subdivision of $K_{5.}$) Grading rubric.

2 pts. for alleged but incorrect subdivision.

2 pts. for claiming a K_5 or $K_{3,3}$ subgraph (not subdivided). There is none.

(b) (10 points) What is its crossing number $cr(G_{11})$?

Solution. We know $cr(G_{11}) > 0$ by (a) and $cr(G_{11}) \le 2$ by the drawing. Therefore $cr(G_{11}) = 1$ or 2. (I believe I can prove it is 2, but it's a bit complicated. I will look at this again later.)

Grading rubric.

6 pts. for $cr(G_{11}) > 0$ by (a), and claiming $cr(G_{11}) = 2$ because of a plausible wrong reason, e.g., you tried several drawings and could not get 1. "That is not logical, Captain."

3 (-2 if omitted) pts. $cr(G_{11}) > 0$ by (a).

3 pts. $cr(G_{11}) > 0$ by (a); > 1 for a reason that doesn't make sense to me or is plainly wrong.

- (c) (10 points) What is its splitting number $\sigma(G_{11})$? **Solution.** By nonplanarity, $\sigma(G_{11}) \ge 1$. One splitting of g (split off the edge gj to become g'j) suffices to make G_{11} planar; so $\sigma(G_{11}) \le 1$. A different splitting is of f (split off edges fh and fi). Conclusion: $\sigma(G_{11}) = 1$. **Grading rubric.** β (-2 if omitted) pts. $\sigma(G_{11}) > 0$ by (a). γ pts. for $\sigma(G_{11}) > 0$ by (a), and = 2 by two splittings.
- (d) (10 points) What is its thickness $\theta(G_{11})$? **Solution.** $\theta(G_{11}) > 1$ by (a). It's easy to decompose G_{11} into two planar subgraphs, so $\theta(G_{11}) = 2$. **Grading rubric.**

3 (-2 if omitted) pts. $\theta(G_{11}) > 1$ by (a).

-1 pts. per decomposition error.

(e) (2 points) Is it an Earth–Moon graph?
 Solution. Yes, because the thickness is 2. Draw one planar subgraph on each "planet".

Grading rubric.

 G_{11}

 θ pts. for taking "countries" of the nonplanar graph.

1 pts. if no reason.

