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Given a set of k colors, there is a certain number of ways to color a graph GG with those
colors. If k is too small , that number is 0 (because you don’t have enough colors to color
G). If k is large enough, that number is a positive number. So we can define a function on
positive integers, which I call x¢, by letting x¢(k) = the number of colorings of G with k
colors. Let’s call this function the chromatic function of G. (Don’t confuse x¢, the function,
with x(G), the chromatic number.)

This function has the property that it equals 0 for every k < x(G) and is positive for
every k > x(G), because if you can color a graph with k& colors, you can also color it with
any larger set of colors. (Remember, it’s not necessary to use all the colors.)

Look at examples. You have k colors. Consider complete graphs, where all vertices are
adjacent so no two can have the same color.

Ex. 1 For the tiny complete graph K; you only pick one color. There are k ways to do that,
S0 XK, (k) = k.

Ex. 2 For the very small complete graph K5, say the vertices are vy, v5. You pick one color
for vy; there are k ways to do that. Then you pick a different color for vy; there are
k — 1 ways to do that (for each choice of color for v;) because you used one color. The
number of ways to do this process is k- (k — 1), so xk, (k) = k(k — 1).

Ex. 3 For the small complete graph K3, say the vertices are vy, vy, v3. First choose a color
for vy: there are k ways to choose it. Now there are k — 1 colors left, from which you
choose one for vy; there are k — 1 choices for this color. Then you choose one of the
k — 2 remaining colors for vs. The total number of ways to choose the three colors is
k-(k—1)-(k—2),s0 xg, (k) =k(k—1)(k — 2).

Ex. 4 Let’s do any K,. For the first vertex (it doesn’t matter which vertex this is) we choose
from k colors. For the next vertex we have k — 1 colors to choose from. For the third
vertex we have k — 2 colors to choose from. Etc. For the p-th vertex, we already used
p—1 colors so we have k— (p—1) = k—p+1 colors to choose from. The total number
of ways to color the p vertices is the product, k(k —1)(k —2)--- (k — [p — 1]), so this
equals xg, (k).

But suppose we don’t have enough colors, i.e., k& < p? The formula should give
0. E.g., if we have p — 1 colors, there is no way to color K,. But that’s okay:
our formula has the factor £ — [p — 1] = 0, which is the number of colorings with
p — 1 colors. Similarly, for any number of colors m < p, there is a factor k — m in
Xk, (k) = k(k—1)(k —2)---(k — [p — 1]); then with & = m colors we have the factor
k —m = 0 so we get the right answer, xx,(m) = 0, from our formula.

Every chromatic function x, (k) is a polynomial of degree p and it is monic (the leading
coefficient is 1). Here is the surprising fact:

Theorem 1. Let G be any graph with p vertices. The chromatic function of G is a polynomaial
of degree p and is monic.

So we change the name of the function and call it the chromatic polynomial of G. Just
to explain: I'm saying there is a polynomial, xg(x), such that for each positive integer k,
X (k) is the number of ways to color G in k colors. This is not an obvious fact.

The chromatic polynomial turns out to have applications in geometry and in physics, but
I will ignore that.



A theorem should have a proof, so here it is.

Proof. Let’s define another function: ¢ (k) = the number of ways to color G using every one
of the k colors. This is a very different function from the chromatic polynomial. ¥ (k) =0
if k is too small (specifically, k& < x(G)) and also if k is too large (k > p, because there are
too many colors to use them all).

We can compute the chromatic polynomial from the numbers (1), vq(2),...,%a(p) as
follows: Suppose we have k colors available. We can pick the number of colors to use, say
m (where m < k) and then use all those m colors to color G. There are (:1) ways to choose
the m colors out of our k available colors. For each choice of the m colors, there are g (m)
ways to color G using those m colors. So the total number of ways to color G using exactly
m colors from our set of k colors is ¥g(m) (:1) But we could have picked any value of m
from 1 to p, so we should sum them up to get the total number of ways to color G with our

k available colors, i.e.,
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Now we do a little algebra. You probably know that ( ) = ———. You may have seen

k
m/) — ml(k—m)!
W Let’s write this out:
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that this equals
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by cancelling common factors in the numerator and denominator.
So now I can write
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Notice that k(k—1)--- (k—m+1) is a monic polynomial in k of degree m. So we are adding
up polynomials of degrees m = 1,2, ..., p with coefficients ¥¢(m)/m!. The highest degree is
p, so our sum is a polynomial of degree at most p.

The term kP arises only from m = p and the coefficient is g (p)/p!. I claim that ¥ ¢(p) = p!.
That is because to color using exactly p colors, we must give every vertex a separate one
of the p colors, and there are p! ways to do that. So the coefficient of kP is 1. That means
the highest-degree term in the polynomial ys (k) is 1k?, i.e., we have a monic polynomial of
degree p. Done! O

I didn’t have to know the values of the numbers 1g(m). All I need to know is that they
don’t depend on k, the actual number of colors. In fact, most of the numbers ¢)g(m) are
virtually impossible to calculate. We need a different way to find the chromatic polynomial.
A method exists; it uses deletion and contraction of one edge at a time. This will come later,
if time allows.



