Math 386 Quiz 2 (2009/9/22)
SOLUTIONS
Justify all answers, except where stated.
(1) [10 points.] What r-combination of what multiset M corresponds to the sequence
aaaa|aa|||aaa?

What is the value of r ? What is the number of types in M (i.e., k)?

$$
M=\underline{\left\{\infty \cdot a_{1}, \infty \cdot a_{2}, \infty \cdot a_{3}, \infty \cdot a_{4}, \infty \cdot a_{5}\right\}} \quad r=\underline{9} \quad k=\underline{5}
$$

The 9 -combination is $\left\{4 \cdot a_{1}, 2 \cdot a_{2}, 0 \cdot a_{3}, 0 \cdot a_{4}, 3 \cdot a_{5}\right\}$.
It's important to know which is the size of the combination and which is the number of types in the multiset. Also, I'd like you to know the difference between the multiset M from which the combination is taken, and the combination itself.
(2) [5 points.] What sequence of a 's and |'s corresponds to the solution (3, 4, 5, 4, 3, 2, 0) of the equation $x_{1}+x_{2}+\cdots+x_{7}=21$?
aaa|aaaa|aaaaa|aaaa|aaa|aa|
It's really important to know how many $\mid \mathrm{s}$ to put in. If you don't, you don't understand the method here. I don't care about writing down sequences; it's understanding the technique that counts.
(3) [5 points.] What combination from $\left\{\infty \cdot a_{1}, \ldots, \infty \cdot a_{7}\right\}$ corresponds to the solution $(3,4,5,4,3,2,0)$ of the equation $x_{1}+x_{2}+\cdots+x_{7}=21$?
$\left\{3 \cdot a_{1}, 4 \cdot a_{2}, 5 \cdot a_{3}, 4 \cdot a_{4}, 3 \cdot a_{5}, 2 \cdot a_{6}, 0 \cdot a_{7}\right\}$.
Am I asking for a combination or for a number? (Guess.)
(4) [5 points.] What combination from $\left\{\infty \cdot a_{1}, \ldots, \infty \cdot a_{7}\right\}$ corresponds to the solution $(3,4,8,4,3,2,-4)$ of the equation $x_{1}+x_{2}+\cdots+x_{7}=21$?

None. You can't have a combination where an element has negative multiplicity.
So you think it's a trick question? I expect you to be paying attention!

