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Abstract 

An order 3 magic hexagon resembles the shape of a 19-cell honeycomb, arranged in a 3 4 5 4 

3 manner. The requirement is to fill the numbers 1-19 in the grids so that each row (15 in 

total) adds up to 38. 

Previously invented methods aimed at solving this problem and proving its uniqueness were 

either not rigorous enough or too intricate. So by analyzing its properties, I wanted to find a 

combinatorial solution to its construction, prove its uniqueness, and investigate whether its 

mathematical principles can be used in real-world applications. 

The difficulty depends on the viewpoint, so the first step was to label each grid in a 

convenient way. I chose to look at the magic hexagon as a network composed of a center and 

rings. Then the connections and restrictions of each number set could be found by formula 

derivation. In a similar fashion, symmetrical properties were also found. The next step was to 

analyze possible distributions of odd and even numbers. Out of the 9 configurations, only 1 

proved to be usable. The final step was construction. With all the properties known, the few 

impossibilities were easily eliminated, and only one solution remained, thus proving its 

uniqueness. 

The procedures used on the order 3 magic hexagon may be extended to those of higher orders, 

providing more ease in their construction. The unique properties of magic hexagons may be 

used in some fields of application, such as in password systems, large-scale roof structure, 

composite material, national security systems and many other fields. 
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Introduction 

Everything started from a math corner in a small weekly 

newspaper published in 1910. It was a recreational mathematics 

problem; the requirement was to fill the numbers 1–19 into the 

cells in figure 1, so that the numbers in each line (15 in total) add 

up to 38. 
 

Figure 1 

Ordinary people would laugh at it, skip it over, and never think of it again. But Mr. 

Adams, who had great love for mathematics, took it seriously. He wanted to find an answer. 

To reduce labor and protect the earth, Adams obtained a 

numbered set of hexagonal ceramic tiles and tried to arrange them 

on a board randomly. He worked hard and 47 years later, in 1957, 

he finally got a solution, which is shown in figure 2.  

Figure 2 

Adams’s solution was a real big success at that time. However, mathematicians did not 

stop there; they proposed two critical questions, as listed below: 

1. Is Adams’s solution unique or are there other arrangements that also work? (Ignore 

rotations and reflections of the original arrangement.) 

2. Is there a systematic approach through which all such solutions could be found 

mathematically? 

I personally want to add a little bit more: the questions being the same, while subjected 

to higher order magic hexagons. 

 

Answer to the first question: 

It is unique, proved by computers. A program which can analyze 196729 configurations 

was ran on an IBM 1620. The calculation took 42 minutes. 

Comment: 

You may think, that is good, we have got the answer, and it really did not take that much 

time. However, here is a problem: ironically, mathematicians usually do not like computer- 

based proofs, as they lack mathematical methods and logic, and sometimes aesthetic aspects. 

This method will also experience great difficulty when used on higher order magic hexagons. 
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For now, the best approach to the second question: 

This method was proposed by Charles W. Trigg, the first step is to list all the 

possibilities of the outer sides (since each of them is made up of three numbers only), and 

then eliminate. In this way 1896 configurations have to be examined manually, out of which 

121 proved usable. Then, list all the possibilities of the inside. 120 of them were again 

eliminated manually; only one is left, thus constructing the magic hexagon successfully. 

Comment: 

While he did answer the second question, I believe there should be better and simpler 

methods. Examining 1896 configurations sound extremely intricate, at least to me. 

 

My Approach: An Overview 

In the combinatorial method I have proposed, the order 3 magic hexagon can be 

constructed easily, and its uniqueness can be proved at the same time. 

 

Step One: Formula Derivation 

To make the analysis and drawing easier, I have simplified the diagram to the form 

illustrated in figure 3; the numbers then goes to each intersection. The next important step is 

labeling. Trying to label along each line gives weird symbols and the analysis could not 

continue, so I chose to look at the magic hexagon as a system composed of a center and rings. 

 
Figure 3 

 

Here A ൌ aଵ ൅ aଶ ൅ aଷ ൅ aସ ൅ aହ ൅ a଺ 

B ൌ bଵ ൅ bଶ ൅ bଷ ൅ bସ ൅ ൅ڮ bଵଶ 

b′ ൌ bଵ ൅ bଷ ൅ bହ ൅ b଻ ൅ bଽ ൅ bଵଵ 

∆bଵ ൌ bଶ ൅ b଺ ൅ bଵ଴ 

∆bଶ ൌ bସ ൅ b଼ ൅ bଵଶ 
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We can now try to combine the 15 initial restrictions and seek for reasonable results. In 

this way, more restrictions (which are good and helpful in solving such a system) could be 

found. 

ە
ۖۖ
ۖ
۔

ۖۖ
ۖ
3○ۓ ൅○8 ൅○13 ൌ 3Φ ൅ A ൅ bᇱ ൌ 114 ฺ Φ ൌ 38 െ

A ൅ bԢ
3                               

ە
۔

4○ۓ ൅○9 ൅○14 ൌ 2Δbଵ ൅ A ൌ 114

○2 ൅○7 ൅○12 ൌ 2Δbଶ ൅ A ൌ 114
ฺ ቄΔbଵ ൌ Δbଶ ሺset as Δbሻ

A ൅ 2Δb ൌ 114
              ฺ

○1 ൅○5 ൅○6 ൅○10 ൅○11 ൅○15 ൌ 2bᇱ ൅ 2Δb ൌ 228 ฺ bᇱ ൅ Δb ൌ 114 

 

 

 

ە
۔

ۓ 3Φ ൅ A ൌ 114 െ bᇱ ൌ Δb ൌ ଵଵସିA
ଶ

ฺ A ൅ 2Φ ൌ 38                 
Δb ൌ 114 െ bᇱ ൌ A ൅ 3Φ ൌ 38 ൅Φ                                                    
bᇱ ൌ 114 െ Δb ൌ A ൅ Δb ൌ ቄA ൅ 38 ൅ Φ ൌ 2A ൅ 3Φ ൌ 76 െΦ

A ൅ 114 െ bᇱ ฺ A ൌ 2bᇱ െ 114    

 

Some important formulae: 

ሺ1ሻ  Φ ൌ 38 െ   A൅bԢ

3  

ሺ2ሻ  ∆bଵ ൌ ∆bଶ (to simplify, we can call each of them the ∆b) 

ሺ3ሻ  A ൅ 2∆b ൌ 114 

ሺ4ሻ  ∆b ൅ bᇱ ൌ 114 

ሺ5ሻ  A ൅ 2Φ ൌ 38 

ሺ6ሻ  ∆b ൌ A ൅ 3Φ ൌ 38 ൅ Φ 

ሺ7ሻ  bᇱ ൌ A ൅ Δb ൌ 2A ൅ 3Φ ൌ 76 െ Φ 

ሺ8ሻ  A ൌ 2bᇱ െ 114 

Some significance: 

<1> From A ൅ 2Φ ൌ 38 we know A must be even. 

<2> From bᇱ ൌ A ൅ Δb ൌ 76 െ Φ we know bᇱ, Δb and Φ are of the same odd-even 

property. 

<3> From Formula (3)–(8) we can see that Φ,  A,  Δb  and  bᇱ  have exact mutual 

relationships, that is, if we knew one of them, we can work out all the other three values. 

<4> A୫୧୬ ൌ 1 ൅ 2 ൅ 3 ൅ 4 ൅ 5 ൅ 7 ൌ 22, then Φ୫ୟ୶ ൌ 8. We can now work out the 

ranges of A,  Δb  and  bᇱ: 
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 ൞

Φ ൑ 8               
22 ൑ A ൑ 36  
39 ൑ Δb ൑ 46
68 ൑ bᇱ ൑ 75 

 

 

Step Two: Symmetrical Properties 

Beside the “group” view shown above, another view, featuring mostly triangular 

constituents, can also be considered. They are especially useful in eliminating odd-even 

distributions, since only 4 or 6 numbers are involved in each equation. 

Type 1 and 2: 

     

 
The sum of the three numbers on the vertices of a colored triangle equals to that of the 

other same-colored triangle. 

Type 3: 
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The sum of the three numbers on the vertices of a colored triangle equals to the other 

same-colored one on the opposite side of the B ring. 

Type 4: 

 
The sum of the numbers on the two blue spots equals to the sum of the red ones. 

 

Step Three: Odd‐Even Distribution  (   stands  for an odd number,    stands  for an even 

number) 

This is a major step; since each line should add up to 38, which is an even number, we 

can try to analyze whether it is a good restriction or not. From the formulae in step one, we 

know that A is even, bᇱ, Δb and Φ are of the same odd-even property. Out of these sets, Δb 

and Φ  are the easiest to analyze. In the procedure illustrated below, only nine possible 

distributions can be found. 

If Φ is odd, then Δb is odd, possible matches of the two Δb’s are 3 odd + 3 odd, 3 odd 

+ 1 odd 2 even, 1 odd 2 even + 1 odd 2 even. 

3 odd + 3 odd: 
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3 odd + 1 odd 2 even: 

 

 

1 odd 2 even + 1 odd 2 even (ortho-): 
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1 odd 2 even + 1 odd 2 even (para-): 

 

 

If Φ is even, then Δb is even, possible matches of the two Δb’s are 3 even + 3 even, 3 even + 1 

even 2 odd, 1 even 2 odd + 1 even 2 odd. 

 

3 even + 3 even: 
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3 even + 1 even 2 odd: 

 

 

1 even 2 odd + 1 even 2 odd (ortho-): 
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1 even 2 odd + 1 even 2 odd (para-): 

 

 

Let us first take a look at graph ①. Consider the smallest possible sum of A ring, it is the 

sum of the first six even numbers 2 ൅ 4 ൅ 6 ൅ 8 ൅ 10 ൅ 12 ൌ 42. However, the formula 

A ൅ 2Φ ൌ 38  tells us A must be smaller than or equal to 36. The outcome of this 

distribution violates our formula, so it must be eliminated. Similarly, graph ③－⑨ can also 

be proved to be unusable, as shown below: 
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Elimination of graph ③: 

 
      aଵ  is the key spot here, so we may try setting aଵ as any even number and see the 

consequences. Let us first see what happens if aଵ ൌ 18. 

   Since bଶ ൅ aଵ ൅ a଺ ൅ bଵ଴ ൌ 38 ൌ bସ ൅ aଶ ൅ aଵ ൅ bଵଶ, we can set bଶ ൅ a଺ ൅ bଵ଴ ൌ Xୟ, 

bସ ൅ aଶ ൅ bଵଶ ൌ Xୠ, then Xୟ ൌ Xୠ ൌ 38 െ 18 ൌ 20. 

   All even numbers sum to 90, and 90 െ ሺ2 ൈ 20ሻ െ 18 ൌ 32. 

   We have already used 7 even numbers including 18, and now, as we can see, there are no 

even-number pair that can sum to 32. This is equivalent to saying that there can be no two 

sets of triple even numbers both with a sum of 20. So this graph does not work if aଵ ൌ 18. If 

we then set aଵ as 16, 14, 12, 10, 8, 6, 4 or 2, similar outcome results, proving that this graph 

does not work. 

 

Elimination of graph ④: 

 

   In this graph Φ can be 1, 3, 5 or 7. We 

may first set Φ ൌ 7 , then A ൌ 24 ൌ 1 ൅

3 ൅ 5 ൅ 9 ൅ 2 ൅ 4. 

   According to symmetrical property No. 3, 

the number 6 cannot be at any of the ∆b 

positions and should only be at bଽ or bଵଵ 

(which is equivalent to b଻). If 6 is at bଽ, we 

must find two sets of 32s beside it, which is 

impossible since only 14 ൅ 18 ൌ 32. 
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   If 6 is at bଵଵ, then bଽ and bଵ଴ require the use of 14 and 18; accordingly bଵ and bଵଶ 

will use 13 and 19, or 15 and 17. We then try to put these four numbers to bଵଶ respectively. 

When bଵଶ ൌ 13, bଵ ൌ 19, we get aଷ ൅ aସ ൌ 6 ൌ 1 ൅ 5, 3 and 9 are left for aଵ and a଺, 

from symmetrical property we get b଺ ൌ 19, which is a repetition of bଵ. Letting bଵଶ ൌ 13, 

15 or 17 results the same. Similarly, letting Φ ൌ 1, 3 or 5 does not make the situation any 

better, so this graph should be eliminated. 

 

Elimination of graph ⑤: 

 

There are only 7 combinations that 

satisfies both row 1 and row 4: 

<1>18, 16, 4 and 14, 12, 10, 2, leaving 6, 8; 

<2>18, 16, 4 and 14, 10, 8, 6, leaving 2, 12; 

<3>18, 14, 6 and 16, 10, 8, 4, leaving 2, 12; 

<4>18, 12, 8 and 16, 14, 6, 2, leaving 4, 10; 

<5>16, 14, 8 and 18, 12, 6, 2, leaving 4, 10; 

<6>16, 14, 8 and 18, 10, 6, 4, leaving 2, 12; 

<7>16, 12, 10 and 18, 14, 4, 2, leaving 6, 8; 

 

 

We can first take situation <1> as an example. The minimum value of aଷ ൅ aସ will be 

10 ൅ 2 ൌ 12, which implies that Φ cannot be 8, otherwise bଵଶ ൌ 20. So Φ ൌ 6, b଺ ൌ 8, 

which requires aଵ ൅ a଺ ൌ 2 and is impossible. This possibility is thus excluded. Situations 

<2>～<7> produce similar results, proving that this graph is unusable. 

 

Elimination of graph ⑥: 
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In this graph Φ can be 2, 4, 6 or 8. First take Φ ൌ 8 as an example. Now A ൌ 22 ൌ

1 ൅ 3 ൅ 5 ൅ 7 ൅ 2 ൅ 4; in the left over even numbers, only two sets of triple numbers which 

sum to 38 can be found: 18 ൅ 14 ൅ 6 and 16 ൅ 12 ൅ 10; they have no common number, 

thus does not satisfy the requirement of bଵ, so Φ ൌ 8 does not work. Φ ൌ 2,  4  or  6 

produces similar result, showing that this graph should be eliminated. 

 

Elimination of graph ⑦: 

 

Since A ൅ 2Φ ൌ 38, and that there are 5 even 

numbers in Φ and A, we can see that only three 

combinations are possible: 

        Φ ൌ 2, A ൌ 4 ൅ 6 ൅ 8 ൅ 10 ൅ 1 ൅ 5 

        Φ ൌ 2, A ൌ 4 ൅ 6 ൅ 8 ൅ 12 ൅ 1 ൅ 3 

        Φ ൌ 4, A ൌ 2 ൅ 6 ൅ 8 ൅ 10 ൅ 1 ൅ 3 

We may take Φ ൌ 4 as an example. If the number 10 is at aସ, then either bଵ or bଵଶ 

will be larger than 19, so 10 can only be at aଵ or aଷ (in this circumstance aସ must be 2): 

 
No matter how we arrange 1 and 3, repetition of numbers will occur on ∆b. 

         

There does not exist a possible b଻.     Repetition of numbers will occur. 

Letting Φ ൌ 2 leads to similar results, so this graph is unsuitable. 
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Elimination of graph ⑧: 

 

To satisfy the requirements of row 1 and row 5, 

there is only one possible combination: 6, 14, 18 with 

10, 12, 16. Then 2, 4, 8 should be at Φ,  aଶ, aହ. First 

set Φ ൌ 8 , then A ൌ 38 െ 16 ൌ 22 ൌ 1 ൅ 3 ൅ 5 ൅

7 ൅ 2 ൅ 4, the four odd numbers have three ways to 

combine: 

aଵ, a଺: 1, 3  ֜ b଺ ൌ 12  aଷ, aସ: 5, 7  ֜ bଵଶ ൌ 20; 

aଵ, a଺: 1, 5  ֜ b଺ ൌ 14  aଷ, aସ: 3, 7  ֜ bଵଶ ൌ 18, but 14 and 18 are already in the same row; 

aଵ, a଺: 1, 7  ֜ b଺ ൌ 16  aଷ, aସ: 3, 5  ֜ bଵଶ ൌ 16, 16 are used twice; 

So the possibility of Φ ൌ 8 is excluded. Similar contradiction occurs if we set Φ ൌ 2 

or 4. This graph is thus eliminated. 

 

Elimination of graph ⑨:   

 
Since A ൅ 2Φ ൌ 38, and that there are 5 even numbers in Φ and A, we can see that only 

three combinations are possible: 

        Φ ൌ 2, A ൌ 4 ൅ 6 ൅ 8 ൅ 10 ൅ 1 ൅ 5  ֜ bଷ ൅ bଽ ൌ 30 ൌ 12 ൅ 18  or  14 ൅ 16 

        Φ ൌ 2, A ൌ 4 ൅ 6 ൅ 8 ൅ 12 ൅ 1 ൅ 3  ֜ bଷ ൅ bଽ ൌ 32 ൌ 14 ൅ 18 

        Φ ൌ 4, A ൌ 2 ൅ 6 ൅ 8 ൅ 10 ൅ 1 ൅ 3  ֜ bଷ ൅ bଽ ൌ 30 ൌ 12 ൅ 18  or  14 ൅ 16 

        For each case, no matter how the four even numbers in A ring arrange, repetition of 

numbers among b଺, bଵଶ and bଷ, bଽ results, implying that this distribution is unusable. 
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Step Four: Construction 

So here is the only possible distribution. Since the smallest sum of the A ring in this 

distribution is 2 ൅ 4 ൅ 6 ൅ 8 ൅ 1 ൅ 3 ൌ 24, the largest possible Φ is 7. Now we can write 

down a table of the possible values of each number set. 

 

 

Φ A Δb  b’ 

1 36 39  75

3 32 41  73

5 28 43  71

7 24 45  69

 Only four configurations are left for us to examine. 

Let us first take Φ ൌ 7 and see if everything can work out. Now A ൌ 38 െ 2Φ ൌ

24 ൌ 2 ൅ 4 ൅ 6 ൅ 8 ൅ 1 ൅ 3, 1 and 3 must be at aଷ  and  aସ, then bଵଶ ൌ 7 ൅ 1 ൅ 3 ൌ 11. 

The left-over even numbers are  10,  12,  14,  16,  18; within them only 10 ൅ 12 ൅ 16 ൌ 38, 

now set  bଵଵ  as any of the three numbers and then calculate anti-clockwise. When we get to 

bଶ, only 14 and 18 are left for us to choose from. Continue processing, we find that bଵ and 

b଼ both require 15 to be there, which violates the basic requirement of the magic hexagon, 

thus Φ ൌ 7 does not satisfy.  

 

Similarly, Φ ൌ 1 or 3 are also unsatisfactory, 5 is our last chance. When Φ ൌ 5, there 

are 3 possible sets of A ring: 

൏1൐  A ൌ 2 ൅ 4 ൅ 6 ൅ 12 ൅ 1 ൅ 3, the three even numbers are 8, 14, 16, leaving 12 and 18; 
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൏2൐  A ൌ 2 ൅ 4 ൅ 8 ൅ 10 ൅ 1 ൅ 3, the three even numbers are 6, 14, 18, leaving 12 and 16; 

൏3൐  A ൌ 2 ൅ 4 ൅ 6 ൅ 8 ൅ 1 ൅ 7, the three even numbers are 10, 12, 16, leaving 14 and 18. 

 
 

 
 

 

We have got to the correct solution! A more significant achievement is that, through all 

our steps, all the possible configurations have been examined, which means this result is 

essentially unique. We have solved the two problems simultaneously and easily. 

 

Order 4 Magic Hexagons 

Looking for the solutions to higher order magic hexagons is a real difficult problem for 

computers. For now, the best result is an order 7 magic hexagon using 2–128, created by 
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Zahray Arsen in 2007, using multiple computers (parallel computing) with a traversal 

algorithm. This suggests that any further achievement using this methodology will be 

constrained by the speed of computers. This is not good news for mathematics, which is 

considered to be logical, structural and insightful. Currently, I do not have a complete 

solution to these higher order magic hexagons, but some progress on order 4 magic hexagons 

has been made. For example, I have found 8 formulae; 

 

Here: 

A ൌ aଵ ൅ aଶ ൅ aଷ ൅ aସ ൅ aହ ൅ a଺ 

bԢ ൌ bଵ ൅ bଷ ൅ bହ ൅ b଻ ൅ bଽ ൅ bଵଵ 

bᇱᇱ ൌ bଶ ൅ bସ ൅ b଺ ൅ b଼ ൅ bଵ଴ ൅ bଵଶ 

∆bଵ ൌ bଶ ൅ b଺ ൅ bଵ଴  

∆bଶ ൌ bସ ൅ b଼ ൅ bଵଶ 

cԢ ൌ cଵ ൅ cସ ൅ c଻ ൅ cଵ଴ ൅ cଵଷ ൅ cଵ଺ 

cᇱᇱ ൌ cଶ ൅ cଷ ൅ cହ ൅ c଺ ൅ c଼ ൅ cଽ ൅ cଵଵ 

൅cଵଶ ൅ cଵସ ൅ cଵହ ൅ cଵ଻ ൅ cଵ଼ 

∆cଵ ൌ cଶ ൅ cଷ ൅ c଼ ൅ cଽ ൅ cଵସ ൅ cଵହ 

∆cଶ ൌ cହ ൅ c଺ ൅ cଵଵ ൅ cଵଶ ൅ cଵ଻ ൅ cଵ଼ 

 

 

 

We can get: 

ሺ1ሻ Φ ൅ bᇱ ൌ 111 

ሺ2ሻ  ∆bଵ ൌ ∆bଶ ൌ ∆b 

ሺ3ሻ  A ൅ bᇱᇱ ൌ cԢ 

ሺ4ሻ  A ൅ cᇱ ൌ 2bᇱ ൌ 222 െ 2Φ 

ሺ5ሻ  bᇱᇱ ൅ cᇱᇱ ൌ 444 ൅ 2Φ 

ሺ6ሻ  2cᇱ ൅ cᇱᇱ ൌ 666 

ሺ7ሻ Φ ൅ A ൅ ∆b ൌ 111 

ሺ8ሻ  ∆cଵ ൌ ∆cଶ ൌ ∆c 

 

Some restrictions of each number set: 

ە
ۖ
۔

ۖ
ۓ
Φ ൒ 3       
A ൒ 33     
Δb ൑ 75   
bᇱ ൑ 108  
cᇱ ൑ 183  
Δc ൒ 150 
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And 7 kinds of symmetry: 

             
The sum of the 6 numbers on the vertices 

of a colored triangle equals to that of the 

other colored triangle (6 pairs in total). 

The sum of the 9 numbers on the vertices 

of a colored trapezoid equals to that of the 

other colored trapezoid (3 pairs in total). 

 

       
The sum of the 6 numbers on the vertices 

of an inside colored triangle equals to that 

of the outer same-colored triangle. 

The sum of all the numbers on the vertices 

of the red-colored triangles equals to that 

of the blue-colored triangles. 

   
The sum of all the numbers on the red colored places 

equals to that of the blue colored ones (which means the 

same as formula 2 and 8). 

 

Within each colored hexagon, 

the sum of the 6 vertices plus 

twice the value of the inner 

dot equals that of the other 

same-colored hexagon. 
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With 20 possible odd-even distributions: 
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Here are four completed order 4 magic hexagons that can be found: 

 

 
From these four configurations, we can find two other properties of the order 4 magic 

hexagon. The first one is that there exist 4 adjacent numbers in A ring whose sum is 31, for 

example 5 ൅ 7 ൅ 11 ൅ 8 ൌ 31 ,  5 ൅ 11 ൅ 7 ൅ 8 ൌ 31 ,  6 ൅ 8 ൅ 5 ൅ 12 ൌ 31 ,  6 ൅ 12 ൅
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8 ൅ 5 ൌ 31. The second property is that, if the difference of A and ∆b is multiples of 3 

(including 0), then the difference divide by 3 plus any one number on ∆b equals to the sum 

of the two numbers on the opposite side of A ring. This is actually an extension of  

symmetrical property type 3 of order 3 magic hexagon. Because in order 3 we have 

∆b ൌ A ൅ 3Φ, which means the difference between A and ∆b is 3Φ, so a number on ∆b 

equals to the sum of Φ and the two numbers on the opposite side of A ring. For example, in 

the last graph, A ൌ 50, ∆b ൌ 50, the components of  ∆b are 14 ൌ 5 ൅ 9, 19 ൌ 10 ൅ 9, 

16 ൌ 10 ൅ 6, 18 ൌ 12 ൅ 6, 20 ൌ 8 ൅ 12, 13 ൌ 8 ൅ 5. 

To find all solutions, a possible approach is to compile a program that can execute the 

following operations: 

1. Set Φ as an arbitrary value, calculate b’ ൌ 111 െ Φ; 

2. Assign a number set S ൌ ሼ3, 4, … , 38, 39ሽ െ ሼthe value of Φሽ; 

3. Within S, list all 6-number groups ሼaxis୧ሽ whose sum is b’; 

4. Within ሼaxis୧ሽ, list all combinations of 3 non-overlapping groups ሼሼx୧ሽ, ሼy୧ሽ, ሼz୧ሽሽ; 

5. Within ሼሼx୧ሽ, ሼy୧ሽ, ሼz୧ሽሽ, pick 2 numbers from each sub-group, their sum should equal 

to b’, label them as b୶ଵ, b୶ଶ, b୷ଵ, b୷ଶ, b୸ଵ,  b୸ଶ. If that kind of combination could 

not be found, then this whole group should be eliminated; 

6. Again, pick 2 other numbers from each sub-group, their sum should satisfy the value 

of A, label them as a୶ଵ, a୶ଶ, a୷ଵ, a୷ଶ, a୸ଵ,  a୸ଶ. The rest should be labeled as c୶ଵ, 

c୶ଶ, c୷ଵ, c୷ଶ, c୸ଵ,  c୸ଶ. Similarly, if such combination could not be found, then this 

whole group should be eliminated; 

7. Since symbols with subscripts 1 and 2 are interchangeable, so for each 18-number 

group, there are 2ଽ ൊ 2 ൈ 2 ൌ 256 different configurations (ൊ 2  to cancel out 

mirror images, ൈ 2 to change the sequence of axis); 

8. For each configuration, the program should then work out the values on other spots 

by using the symmetrical properties and formulae mentioned above. If a number 

ever appears more than once, that configuration should be eliminated, leaving us 

with correct solutions. Compared with the simple traversal algorithm, this method 

eliminated most of the ineffective calculations, and is thus more effective. 
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Discussion 

Through the above analysis and procedure, we have investigated several problems 

relating to the order 3 magic hexagon. For example, the problem of listing – how many 

arrangements there are, the structural problem – what properties it has, how efficient the 

algorithm can be, whether an arrangement exists if the restrictions became more rigorous. 

These problems are what combinational mathematics concerns. In a word, with the above 

mathematical principles, the magic hexagon has now stepped into the field of combinatorial 

mathematics. 

1. Although in the formula derivation step we started with 15 equations, they are not all 

linear independent; in fact, all equations and formulae are linear combinations of only 12 

linear equations. This means that unless we knew seven exact numbers, there is no simple 

way of solving this system using methods of linear algebra. 

2. As a graph symmetrical about its center, an odd number occupies this point. This also 

happens to other magic hexagons and magic squares, each of which has a center and whose 

numerical constituents have different quantities of odd and even numbers. The larger group 

ones get to be at the center. Is there a name for this principle? 

3. There are 10 odd numbers and 9 even numbers, all the odd numbers sum to 100, all 

the even numbers sum to 90. These two number sets are not symmetrical. 

I came up with an explanation why all the symmetrical distributions were eliminated; I 

called it the “superimposition of symmetry”, that is, since the distribution describes odd-even 

property, they can be superimposed, the rule is: 

Symmetrical + Symmetrical = Symmetrical 

Symmetrical + Asymmetrical = Asymmetrical 

Asymmetrical + Symmetrical = Asymmetrical 

Asymmetrical + Asymmetrical = Symmetrical 

(Here “+” means “superimposed to”.) 

Since odd and even numbers are naturally asymmetrical, and that the resultant magic 

hexagon is perfectly symmetrical, we can easily conclude that the distribution must be an 

asymmetrical one. 
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4. In analyzing the properties of higher order magic hexagons, we may adopt a virtual 

filling method. This method uses arbitrary numbers and repeated use is allowed. The only 

requirement is to make sure that each line adds to the same value as the real magic hexagon. 

This step may provide provision in deriving formulae of magic hexagons of orders higher 

than four. From observing the properties of the easy-to-construct virtual one, we can find 

some clues of the properties of the real one. We then just have to put the relevant initial 

equations together and actually prove the property, since it is much easier to test whether a 

statement is true than to find it out starting from the middle of nowhere, just as the P vs NP 

problem describes. 

5. By analyzing the few higher order magic hexagons that can be found on the internet, I 

found a tricky trend among them: 

Order Number 
of Rows 

Magic 
Sum 

Sum of All 
Numbers 

Qty. of All 
Numbers 

ܕܝ܁ ܋ܑ܏܉ۻ
.ܡܜۿ ܎ܗ ܛܚ܍܊ܕܝۼ ܔܔۯ  

ൌ
ܛܚ܍܊ܕܝۼ ܔܔۯ ܎ܗ ܍܏܉ܚ܍ܞۯ

ܛܟܗ܀ ܎ܗ ܚ܍܊ܕܝۼ  

3  5  38  190 19 2 

4  7  111  777 37 3 

5  9  244  2196 61 4 

6  11  546  6006 91 6 

7  13  635  8255 127 5 

The last column shows 5 consecutive integers, which leads to some other questions: Is 

there a “highest possible order”? Is there a systematic solution that can work it out? Or that 

magic hexagons of any order is possible? If then, how to prove it? 

6. If we are to optimize a numerical structure with geometrical features, such as the 

construction of a magic hexagon, is it impossible to have a universal, non-traversal algorithm 

if the scale of the structure increases without bound? 

7. Although the magic hexagon is a 2-dimensional shape, in construction, it behaves 

more like a 3-dimensional object, as each position is restricted by three independent 

directions. Therefore, if we can extend the planar magic hexagon into the third dimension, we 

may construct a virtually higher dimensional structure in the 3D world. If that happens, we 

may be able to investigate some properties of higher dimensions in a more obvious way. 
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8. Magic hexagons are unique in many aspects, such as in their complexity (high order 

ones), isotropy, and geometry. Based on these properties, and through thought experiments, I 

came up with some possible applications. 

(1) Password Systems 

Since none of the magic hexagons of orders higher than 7 has been found, we can use 

the diagrams of still higher order magic hexagons as the “lock”. The owner will first fill in 

the numbers 1 to 3nଶ– 3n ൅ 1 randomly, then calculate the sum of each line, and input them 

to the confirmation mechanism. In this way, a cracker, restrained by the speed of the 

computers on earth, cannot reach to the solution in sufficiently short time. What is more, we 

can always leave a gap between the math achievement and the password system. 

(2) Architecture: Roof Structure for Large-scale Buildings 

Both diagrams can be bent in the third dimension, generating domes made up of rods 

and joints. Similar to Fuller’s dome structure, these two also have the properties of being 

light and strong. Another kind of structure mimics a bird’s nest. In the modified graph, the 

Δb is an obvious component. If we single it out, rotate it and stack it many times, we can get 

a bird’s nest structure. In this configuration most of the material is distributed on the outside 

where the largest load is to be supported. On the inside, however, they support less material, 

and they are supported by what is underneath; both require less weight and less strength, so 

minimum amount of material is used there. 

(3) Composite Material 

We can put hexagonal disc springs between two steel boards, making a sandwich-type 

board. The disc springs can have different stiffness, and can be arranged in a magic hexagon 

fashion. In this way, the composite board will not only absorb strong impact resulting from 

heavy storms in the ocean or cannon shots on the battlefield, but also prevent resonance. This 

combination is not a simple one including only materials, but an integration of mechanical 

elements into ordinary material. 

(4) National Security Systems 

Most weapons fire along a straight line. Therefore, it is natural for us to assume that the 

power of most weapons, within their range, can be added linearly. If we can rate the power of 
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a weapon with a number, and then arrange the weapons of different power in the form of a 

magic hexagon, with numbers matching power, we can create a fire net of equal strength, 

which has no weak spots; terrorists will not succeed in breaking the defense system. Higher 

order magic hexagons will make the system more realistic. 

Where else can magic hexagons be used? A professor from Shantou University once 

said that ordinary magic squares can be used in fields such as artificial intelligence, graph 

theory, game theory, experiment design, electric circuit theory, feedback control, analysis 

situs, algorithm improvement, parallel processing, economic dispatch decision, security 

processing of graphics and possibility estimation of engineering works. But unfortunately, no 

further information was provided and no relevant information could be found on the internet. 

If the statement is indeed true, then I think magic hexagons will have more advantages over 

magic squares, because as mentioned above, they contain one more dimension, which may 

provide convenience in processing real world (3-dimensional world) problems. 
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