ProOOF OF PROBLEM 7 IN CHAPTER 7
15 NOVEMBER 2010
CORRECTED

In this proof I include proofs of the assertions in the hint to Problem 6. I decided that
you didn’t have to prove those assertions since they’re suggested in the previous hint, but I
think I ought to.

You'll notice that I don’t use the Euclidean algorithm as the hint suggests.

Theorem 1. For any integers m,n > 0, let d = ged(m,n). Then ged(fm, fn) = fa-
I will use three lemmas in the proof. So, first I state and prove the lemmas.
Lemma 2. The gcd function has the additive properties
ged(a, b+ ka) = ged(a, b)
for any integer k.

Proof. This is a fundamental property in number theory. A more basic property, proved
from the unique factorization property of natural numbers (but I won’t prove it), is that if
cla and c|b, then ¢| ged(a, b).

First we prove that ged(a, b) divides ged(a, b+ ka). Define d = ged(a,b). Since d|a and
d|b, we can write a = dov and b = df. Then b+ ka = d(3 + ka), so d|b + ka. It follows that
d| ged(a, b+ ka).

Now we prove that d' = ged(a, b+ ka) divides ged(a,b). But this is implied by the first
part. Let ¢’ = a and b’ = b+ ka; then d'|b/ — ka’ by the first part with —k instead of k, so
d'|b. Therefore, d’'| gcd(a,b) = d. Since d'|d and (as we showed previously) d|d’, d =d. O

Lemma 3. If a,c are relatively prime, then ged(a, be) = ged(a, b).

Proof. Let d = ged(a, b). Since d|a and d|b (so d|bc), d is a factor of ged(a, be). Now, suppose
ged(a, be)/d # 1; then ged(a, be)/d has a prime factor p. Thus, pd| ged(a, be).

It follows that pd|a and pd|bc. However, pd fb because if it did, then pd|a,b so ged(a, b)
would be a multiple of pd, while we know it is d, and d < pd. Since pd fb, we deduce that
pf(b/d). Also, pd fc because a,c are relatively prime and p|a. Because (b/d)c has a unique
prime factorization, any prime that divides it must divide either b/d or ¢. We have shown
that p fb/d and p fe. Therefore, p f/(b/d)c, so pd fbc, contrary to the hypothesis about pd.

This contradiction proves that ged(a,be)/d = 1, i.e., ged(a, be) = d = ged(a, b). O

Lemma 4. For n > m > 0 we have the general recurrence formulas

fn = ferlfnfm + fmfnfmfl = fmfnferl + fmflfnfm-
Proof. We prove this by induction on m. The induction hypothesis H(m) is:
(1) fn = ferlfnfm + fmfnfmfl for all n > m.

(Please note that the “for all n > m” is an essential part of the induction hypothesis. If you
leave it out, your can’t give a complete proof.)

For m = 1 the general formula says f,, = fofn_1 + fifu_2. Since f; = fo = 1, this last is
just the basic Fibonacci recurrence f, = fo_1 + fn_2, valid forn > 2. Asn >m =1, it is

true that n > 2, so H(1) is proved.
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Now let m > 1 and assume H(m — 1) is true. That is, we're assuming

(2) fu= Frn-mir + frot foom for all n > m.
We want to prove H(m), that is, we want to prove

Since n > m, Equation (2) applies, therefore

fo = fmfo—m+t1 + fm-1fo-m
= fo(foem + fomm—1) + frm1fom
= fufn-m-1+ (fm-1+ fin) fa-m
= fmfn-m-1+ fims1fo—m-

This is H(m), so we have deduced H(m) from H(m — 1). By the Principle of Mathematical
Induction, H(m) is true for all m > 1.

To conclude the proof, note that in Equation (4) we showed that the last expression equals
the middle expression in Lemma, 4. [l

Lemma 5. ged(f,, frr1) =1 for allr > 0.

(4)

Proof. Using Lemma 2, we see that

ng(fm fr+1) = ng(fTa Jr+ fr—l) = ng<fr: fr—l) = ng(fr’7 fr’—i—l)

where 7" = r — 1. Thus, ged(f,, fr+1) is a constant, independent of the particular value of r.
For instance, it equals ged(f1, f2) = ged(1,1) = 1. O

Proof of Theorem 1. The proof is by strong induction on max(m,n), which (by choice of
variable names) I may assume is n. The induction hypothesis is Hgp(n), stated as “If
m € {1,2,...,n} and d = ged(m, n), then fq = ged(fim, fn).”

The base case is n = 1. Then m = 1, so d = ged(m,n) = 1. Moreover, f,, = f, = 1 and
ged(fom, fn) = 1. Since f1 = 1, the induction assumption Hyip,(1) is proved.

Now suppose n > 1 and assume Hpi,(n') is true for all n’ such that 0 < n’ < n. (This
is the Strong Form of induction.) We want to prove Hgyp,(n). Thus, let 0 < m < n. For
convenience, define k = m — n.

There are two cases: k =0 and k£ > 0.

If £ =0, then m = n so f,, = fu. Then ged(m,n) = n and ged(fin, fn) = fn, so the
induction hypothesis is true.

Now assume k > 0. By Lemma 4,

Jn = fomsrfr + fmSre-1-
Since d = ged(m,n), we have d = ged(m,n —m) = ged(m, k) by Lemma 2. Therefore, by

induction, f; = ged(fim, fr)-
Now we evaluate

ng(fma fn) — ng(fm7 fm+1fn—m + fmfn—m—l) — ng(fma fm+1fn—m)

by Lemma 2. As f,, and f,,.1 are relatively prime by Lemma 5,

ng(frm fm—i—lfn—m) = ng(fma fn—m)
by Lemma 3.
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Now, ged(m,n —m) = ged(m,n) = d by Lemma 2, and max(m,n —m) < n, so by
the induction hypothesis, ged(fon, fo—m) = fa. Therefore, ged(fin, fn) = fs- That proves
Hypip(n) assuming Hpy,(n') for all n’ with 0 < n’ < n. By the Strong Form of the Principle
of Mathematical Induction, Hgi,(n) is true for all n > 0. O



