PROOF OF PROBLEM 7 IN CHAPTER 7 15 November 2010Corrected

In this proof I include proofs of the assertions in the hint to Problem 6. I decided that you didn't have to prove those assertions since they're suggested in the previous hint, but I think I ought to.

You'll notice that I don't use the Euclidean algorithm as the hint suggests.

Theorem 1. For any integers m, n > 0, let $d = \operatorname{gcd}(m, n)$. Then $\operatorname{gcd}(f_m, f_n) = f_d$.

I will use three lemmas in the proof. So, first I state and prove the lemmas.

Lemma 2. The gcd function has the additive properties

$$gcd(a, b + ka) = gcd(a, b)$$

for any integer k.

Proof. This is a fundamental property in number theory. A more basic property, proved from the unique factorization property of natural numbers (but I won't prove it), is that if c|a and c|b, then $c|\gcd(a,b)$.

First we prove that gcd(a, b) divides gcd(a, b + ka). Define d = gcd(a, b). Since d|a and d|b, we can write $a = d\alpha$ and $b = d\beta$. Then $b + ka = d(\beta + k\alpha)$, so d|b + ka. It follows that $d | \operatorname{gcd}(a, b + ka).$

Now we prove that $d' = \gcd(a, b + ka)$ divides $\gcd(a, b)$. But this is implied by the first part. Let a' = a and b' = b + ka; then d'|b' - ka' by the first part with -k instead of k, so d'|b. Therefore, $d'|\operatorname{gcd}(a,b) = d$. Since d'|d and (as we showed previously) d|d', d = d'.

Lemma 3. If a, c are relatively prime, then gcd(a, bc) = gcd(a, b).

Proof. Let $d = \gcd(a, b)$. Since d|a and d|b (so d|bc), d is a factor of $\gcd(a, bc)$. Now, suppose $gcd(a, bc)/d \neq 1$; then gcd(a, bc)/d has a prime factor p. Thus, pd|gcd(a, bc).

It follows that pd|a and pd|bc. However, pd/b because if it did, then pd|a, b so gcd(a, b)would be a multiple of pd, while we know it is d, and d < pd. Since pd/b, we deduce that $p \not\mid (b/d)$. Also, $pd \not\mid c$ because a, c are relatively prime and $p \mid a$. Because (b/d)c has a unique prime factorization, any prime that divides it must divide either b/d or c. We have shown that $p \not b/d$ and $p \not c$. Therefore, $p \not (b/d)c$, so $pd \not bc$, contrary to the hypothesis about pd.

This contradiction proves that gcd(a, bc)/d = 1, i.e., gcd(a, bc) = d = gcd(a, b).

Lemma 4. For n > m > 0 we have the general recurrence formulas

$$f_n = f_{m+1}f_{n-m} + f_m f_{n-m-1} = f_m f_{n-m+1} + f_{m-1}f_{n-m}.$$

Proof. We prove this by induction on m. The induction hypothesis H(m) is:

(1)
$$f_n = f_{m+1}f_{n-m} + f_m f_{n-m-1}$$
 for all $n > m$.

(Please note that the "for all n > m" is an essential part of the induction hypothesis. If you leave it out, your can't give a complete proof.)

For m = 1 the general formula says $f_n = f_2 f_{n-1} + f_1 f_{n-2}$. Since $f_1 = f_2 = 1$, this last is just the basic Fibonacci recurrence $f_n = f_{n-1} + f_{n-2}$, valid for $n \ge 2$. As n > m = 1, it is true that $n \ge 2$, so H(1) is proved.

Now let m > 1 and assume H(m-1) is true. That is, we're assuming

(2)
$$f_n = f_m f_{n-m+1} + f_{m-1} f_{n-m}$$
 for all $n \ge m$.

We want to prove H(m), that is, we want to prove

(3)
$$f_n = f_{m+1}f_{n-m} + f_m f_{n-m-1}$$
 for all $n > m$.

Since n > m, Equation (2) applies, therefore

(4)

$$f_{n} = f_{m}f_{n-m+1} + f_{m-1}f_{n-m}$$

$$= f_{m}(f_{n-m} + f_{n-m-1}) + f_{m-1}f_{n-m}$$

$$= f_{m}f_{n-m-1} + (f_{m-1} + f_{m})f_{n-m}$$

$$= f_{m}f_{n-m-1} + f_{m+1}f_{n-m}.$$

This is H(m), so we have deduced H(m) from H(m-1). By the Principle of Mathematical Induction, H(m) is true for all $m \ge 1$.

To conclude the proof, note that in Equation (4) we showed that the last expression equals the middle expression in Lemma 4. $\hfill \Box$

Lemma 5. $gcd(f_r, f_{r+1}) = 1$ for all $r \ge 0$.

Proof. Using Lemma 2, we see that

$$gcd(f_r, f_{r+1}) = gcd(f_r, f_r + f_{r-1}) = gcd(f_r, f_{r-1}) = gcd(f_{r'}, f_{r'+1})$$

where r' = r - 1. Thus, $gcd(f_r, f_{r+1})$ is a constant, independent of the particular value of r. For instance, it equals $gcd(f_1, f_2) = gcd(1, 1) = 1$.

Proof of Theorem 1. The proof is by strong induction on $\max(m, n)$, which (by choice of variable names) I may assume is n. The induction hypothesis is $H_{\text{Fib}}(n)$, stated as "If $m \in \{1, 2, \ldots, n\}$ and $d = \gcd(m, n)$, then $f_d = \gcd(f_m, f_n)$."

The base case is n = 1. Then m = 1, so d = gcd(m, n) = 1. Moreover, $f_m = f_n = 1$ and $\text{gcd}(f_m, f_n) = 1$. Since $f_1 = 1$, the induction assumption $H_{\text{Fib}}(1)$ is proved.

Now suppose n > 1 and assume $H_{\text{Fib}}(n')$ is true for all n' such that 0 < n' < n. (This is the Strong Form of induction.) We want to prove $H_{\text{Fib}}(n)$. Thus, let $0 < m \leq n$. For convenience, define k = m - n.

There are two cases: k = 0 and k > 0.

If k = 0, then m = n so $f_m = f_n$. Then gcd(m, n) = n and $gcd(f_m, f_n) = f_n$, so the induction hypothesis is true.

Now assume k > 0. By Lemma 4,

$$f_n = f_{m+1}f_k + f_m f_{k-1}.$$

Since $d = \gcd(m, n)$, we have $d = \gcd(m, n - m) = \gcd(m, k)$ by Lemma 2. Therefore, by induction, $f_d = \gcd(f_m, f_k)$.

Now we evaluate

$$gcd(f_m, f_n) = gcd(f_m, f_{m+1}f_{n-m} + f_m f_{n-m-1}) = gcd(f_m, f_{m+1}f_{n-m})$$

by Lemma 2. As f_m and f_{m+1} are relatively prime by Lemma 5,

$$gcd(f_m, f_{m+1}f_{n-m}) = gcd(f_m, f_{n-m})$$

by Lemma 3.

Now, gcd(m, n - m) = gcd(m, n) = d by Lemma 2, and max(m, n - m) < n, so by the induction hypothesis, $gcd(f_m, f_{n-m}) = f_d$. Therefore, $gcd(f_m, f_n) = f_d$. That proves $H_{\text{Fib}}(n)$ assuming $H_{\text{Fib}}(n')$ for all n' with 0 < n' < n. By the Strong Form of the Principle of Mathematical Induction, $H_{\text{Fib}}(n)$ is true for all n > 0.