
Proof of Problem 7 in Chapter 7
15 November 2010

Corrected

In this proof I include proofs of the assertions in the hint to Problem 6. I decided that
you didn’t have to prove those assertions since they’re suggested in the previous hint, but I
think I ought to.

You’ll notice that I don’t use the Euclidean algorithm as the hint suggests.

Theorem 1. For any integers m,n > 0, let d = gcd(m,n). Then gcd(fm, fn) = fd.

I will use three lemmas in the proof. So, first I state and prove the lemmas.

Lemma 2. The gcd function has the additive properties

gcd(a, b+ ka) = gcd(a, b)

for any integer k.

Proof. This is a fundamental property in number theory. A more basic property, proved
from the unique factorization property of natural numbers (but I won’t prove it), is that if
c|a and c|b, then c| gcd(a, b).

First we prove that gcd(a, b) divides gcd(a, b + ka). Define d = gcd(a, b). Since d|a and
d|b, we can write a = dα and b = dβ. Then b+ ka = d(β + kα), so d|b+ ka. It follows that
d| gcd(a, b+ ka).

Now we prove that d′ = gcd(a, b + ka) divides gcd(a, b). But this is implied by the first
part. Let a′ = a and b′ = b + ka; then d′|b′ − ka′ by the first part with −k instead of k, so
d′|b. Therefore, d′| gcd(a, b) = d. Since d′|d and (as we showed previously) d|d′, d = d′. �

Lemma 3. If a, c are relatively prime, then gcd(a, bc) = gcd(a, b).

Proof. Let d = gcd(a, b). Since d|a and d|b (so d|bc), d is a factor of gcd(a, bc). Now, suppose
gcd(a, bc)/d 6= 1; then gcd(a, bc)/d has a prime factor p. Thus, pd| gcd(a, bc).

It follows that pd|a and pd|bc. However, pd 6 |b because if it did, then pd|a, b so gcd(a, b)
would be a multiple of pd, while we know it is d, and d < pd. Since pd6 |b, we deduce that
p 6 |(b/d). Also, pd 6 |c because a, c are relatively prime and p|a. Because (b/d)c has a unique
prime factorization, any prime that divides it must divide either b/d or c. We have shown
that p 6 |b/d and p 6 |c. Therefore, p 6 |(b/d)c, so pd 6 |bc, contrary to the hypothesis about pd.

This contradiction proves that gcd(a, bc)/d = 1, i.e., gcd(a, bc) = d = gcd(a, b). �

Lemma 4. For n > m > 0 we have the general recurrence formulas

fn = fm+1fn−m + fmfn−m−1 = fmfn−m+1 + fm−1fn−m.

Proof. We prove this by induction on m. The induction hypothesis H(m) is:

(1) fn = fm+1fn−m + fmfn−m−1 for all n > m.

(Please note that the “for all n > m” is an essential part of the induction hypothesis. If you
leave it out, your can’t give a complete proof.)

For m = 1 the general formula says fn = f2fn−1 + f1fn−2. Since f1 = f2 = 1, this last is
just the basic Fibonacci recurrence fn = fn−1 + fn−2, valid for n ≥ 2. As n > m = 1, it is
true that n ≥ 2, so H(1) is proved.
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Now let m > 1 and assume H(m− 1) is true. That is, we’re assuming

(2) fn = fmfn−m+1 + fm−1fn−m for all n ≥ m.

We want to prove H(m), that is, we want to prove

(3) fn = fm+1fn−m + fmfn−m−1 for all n > m.

Since n > m, Equation (2) applies, therefore

fn = fmfn−m+1 + fm−1fn−m

= fm(fn−m + fn−m−1) + fm−1fn−m

= fmfn−m−1 + (fm−1 + fm)fn−m

= fmfn−m−1 + fm+1fn−m.

(4)

This is H(m), so we have deduced H(m) from H(m− 1). By the Principle of Mathematical
Induction, H(m) is true for all m ≥ 1.

To conclude the proof, note that in Equation (4) we showed that the last expression equals
the middle expression in Lemma 4. �

Lemma 5. gcd(fr, fr+1) = 1 for all r ≥ 0.

Proof. Using Lemma 2, we see that

gcd(fr, fr+1) = gcd(fr, fr + fr−1) = gcd(fr, fr−1) = gcd(fr′ , fr′+1)

where r′ = r− 1. Thus, gcd(fr, fr+1) is a constant, independent of the particular value of r.
For instance, it equals gcd(f1, f2) = gcd(1, 1) = 1. �

Proof of Theorem 1. The proof is by strong induction on max(m,n), which (by choice of
variable names) I may assume is n. The induction hypothesis is HFib(n), stated as “If
m ∈ {1, 2, . . . , n} and d = gcd(m,n), then fd = gcd(fm, fn).”

The base case is n = 1. Then m = 1, so d = gcd(m,n) = 1. Moreover, fm = fn = 1 and
gcd(fm, fn) = 1. Since f1 = 1, the induction assumption HFib(1) is proved.

Now suppose n > 1 and assume HFib(n′) is true for all n′ such that 0 < n′ < n. (This
is the Strong Form of induction.) We want to prove HFib(n). Thus, let 0 < m ≤ n. For
convenience, define k = m− n.

There are two cases: k = 0 and k > 0.
If k = 0, then m = n so fm = fn. Then gcd(m,n) = n and gcd(fm, fn) = fn, so the

induction hypothesis is true.
Now assume k > 0. By Lemma 4,

fn = fm+1fk + fmfk−1.

Since d = gcd(m,n), we have d = gcd(m,n −m) = gcd(m, k) by Lemma 2. Therefore, by
induction, fd = gcd(fm, fk).

Now we evaluate

gcd(fm, fn) = gcd(fm, fm+1fn−m + fmfn−m−1) = gcd(fm, fm+1fn−m)

by Lemma 2. As fm and fm+1 are relatively prime by Lemma 5,

gcd(fm, fm+1fn−m) = gcd(fm, fn−m)

by Lemma 3.
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Now, gcd(m,n − m) = gcd(m,n) = d by Lemma 2, and max(m,n − m) < n, so by
the induction hypothesis, gcd(fm, fn−m) = fd. Therefore, gcd(fm, fn) = fd. That proves
HFib(n) assuming HFib(n′) for all n′ with 0 < n′ < n. By the Strong Form of the Principle
of Mathematical Induction, HFib(n) is true for all n > 0. �


