Proof of Problem 7 in Chapter 7
 15 November 2010
 Corrected

In this proof I include proofs of the assertions in the hint to Problem 6. I decided that you didn't have to prove those assertions since they're suggested in the previous hint, but I think I ought to.

You'll notice that I don't use the Euclidean algorithm as the hint suggests.
Theorem 1. For any integers $m, n>0$, let $d=\operatorname{gcd}(m, n)$. Then $\operatorname{gcd}\left(f_{m}, f_{n}\right)=f_{d}$.
I will use three lemmas in the proof. So, first I state and prove the lemmas.
Lemma 2. The gcd function has the additive properties

$$
\operatorname{gcd}(a, b+k a)=\operatorname{gcd}(a, b)
$$

for any integer k.
Proof. This is a fundamental property in number theory. A more basic property, proved from the unique factorization property of natural numbers (but I won't prove it), is that if $c \mid a$ and $c \mid b$, then $c \mid \operatorname{gcd}(a, b)$.

First we prove that $\operatorname{gcd}(a, b)$ divides $\operatorname{gcd}(a, b+k a)$. Define $d=\operatorname{gcd}(a, b)$. Since $d \mid a$ and $d \mid b$, we can write $a=d \alpha$ and $b=d \beta$. Then $b+k a=d(\beta+k \alpha)$, so $d \mid b+k a$. It follows that $d \mid \operatorname{gcd}(a, b+k a)$.

Now we prove that $d^{\prime}=\operatorname{gcd}(a, b+k a)$ divides $\operatorname{gcd}(a, b)$. But this is implied by the first part. Let $a^{\prime}=a$ and $b^{\prime}=b+k a$; then $d^{\prime} \mid b^{\prime}-k a^{\prime}$ by the first part with $-k$ instead of k, so $d^{\prime} \mid b$. Therefore, $d^{\prime} \mid \operatorname{gcd}(a, b)=d$. Since $d^{\prime} \mid d$ and (as we showed previously) $d \mid d^{\prime}, d=d^{\prime}$.

Lemma 3. If a, c are relatively prime, then $\operatorname{gcd}(a, b c)=\operatorname{gcd}(a, b)$.
Proof. Let $d=\operatorname{gcd}(a, b)$. Since $d \mid a$ and $d \mid b$ (so $d \mid b c$), d is a factor of $\operatorname{gcd}(a, b c)$. Now, suppose $\operatorname{gcd}(a, b c) / d \neq 1$; then $\operatorname{gcd}(a, b c) / d$ has a prime factor p. Thus, $p d \mid \operatorname{gcd}(a, b c)$.

It follows that $p d \mid a$ and $p d \mid b c$. However, $p d \nmid b$ because if it did, then $p d \mid a, b$ so $\operatorname{gcd}(a, b)$ would be a multiple of $p d$, while we know it is d, and $d<p d$. Since $p d \nmid b$, we deduce that $p \nmid(b / d)$. Also, $p d \nmid<c$ because a, c are relatively prime and $p \mid a$. Because $(b / d) c$ has a unique prime factorization, any prime that divides it must divide either b / d or c. We have shown that $p \nmid b / d$ and $p \nmid c$. Therefore, $p \nmid(b / d) c$, so $p d \nmid b c$, contrary to the hypothesis about $p d$.

This contradiction proves that $\operatorname{gcd}(a, b c) / d=1$, i.e., $\operatorname{gcd}(a, b c)=d=\operatorname{gcd}(a, b)$.
Lemma 4. For $n>m>0$ we have the general recurrence formulas

$$
f_{n}=f_{m+1} f_{n-m}+f_{m} f_{n-m-1}=f_{m} f_{n-m+1}+f_{m-1} f_{n-m}
$$

Proof. We prove this by induction on m. The induction hypothesis $H(m)$ is:

$$
\begin{equation*}
f_{n}=f_{m+1} f_{n-m}+f_{m} f_{n-m-1} \text { for all } n>m \tag{1}
\end{equation*}
$$

(Please note that the "for all $n>m$ " is an essential part of the induction hypothesis. If you leave it out, your can't give a complete proof.)

For $m=1$ the general formula says $f_{n}=f_{2} f_{n-1}+f_{1} f_{n-2}$. Since $f_{1}=f_{2}=1$, this last is just the basic Fibonacci recurrence $f_{n}=f_{n-1}+f_{n-2}$, valid for $n \geq 2$. As $n>m=1$, it is true that $n \geq 2$, so $H(1)$ is proved.

Now let $m>1$ and assume $H(m-1)$ is true. That is, we're assuming

$$
\begin{equation*}
f_{n}=f_{m} f_{n-m+1}+f_{m-1} f_{n-m} \text { for all } n \geq m \tag{2}
\end{equation*}
$$

We want to prove $H(m)$, that is, we want to prove

$$
\begin{equation*}
f_{n}=f_{m+1} f_{n-m}+f_{m} f_{n-m-1} \text { for all } n>m . \tag{3}
\end{equation*}
$$

Since $n>m$, Equation (2) applies, therefore

$$
\begin{align*}
f_{n} & =f_{m} f_{n-m+1}+f_{m-1} f_{n-m} \\
& =f_{m}\left(f_{n-m}+f_{n-m-1}\right)+f_{m-1} f_{n-m} \\
& =f_{m} f_{n-m-1}+\left(f_{m-1}+f_{m}\right) f_{n-m} \tag{4}\\
& =f_{m} f_{n-m-1}+f_{m+1} f_{n-m} .
\end{align*}
$$

This is $H(m)$, so we have deduced $H(m)$ from $H(m-1)$. By the Principle of Mathematical Induction, $H(m)$ is true for all $m \geq 1$.

To conclude the proof, note that in Equation (4) we showed that the last expression equals the middle expression in Lemma 4.

Lemma 5. $\operatorname{gcd}\left(f_{r}, f_{r+1}\right)=1$ for all $r \geq 0$.
Proof. Using Lemma 2, we see that

$$
\operatorname{gcd}\left(f_{r}, f_{r+1}\right)=\operatorname{gcd}\left(f_{r}, f_{r}+f_{r-1}\right)=\operatorname{gcd}\left(f_{r}, f_{r-1}\right)=\operatorname{gcd}\left(f_{r^{\prime}}, f_{r^{\prime}+1}\right)
$$

where $r^{\prime}=r-1$. Thus, $\operatorname{gcd}\left(f_{r}, f_{r+1}\right)$ is a constant, independent of the particular value of r. For instance, it equals $\operatorname{gcd}\left(f_{1}, f_{2}\right)=\operatorname{gcd}(1,1)=1$.

Proof of Theorem 1. The proof is by strong induction on $\max (m, n)$, which (by choice of variable names) I may assume is n. The induction hypothesis is $H_{\text {Fib }}(n)$, stated as "If $m \in\{1,2, \ldots, n\}$ and $d=\operatorname{gcd}(m, n)$, then $f_{d}=\operatorname{gcd}\left(f_{m}, f_{n}\right) . "$

The base case is $n=1$. Then $m=1$, so $d=\operatorname{gcd}(m, n)=1$. Moreover, $f_{m}=f_{n}=1$ and $\operatorname{gcd}\left(f_{m}, f_{n}\right)=1$. Since $f_{1}=1$, the induction assumption $H_{\text {Fib }}(1)$ is proved.

Now suppose $n>1$ and assume $H_{\mathrm{Fib}}\left(n^{\prime}\right)$ is true for all n^{\prime} such that $0<n^{\prime}<n$. (This is the Strong Form of induction.) We want to prove $H_{\text {Fib }}(n)$. Thus, let $0<m \leq n$. For convenience, define $k=m-n$.

There are two cases: $k=0$ and $k>0$.
If $k=0$, then $m=n$ so $f_{m}=f_{n}$. Then $\operatorname{gcd}(m, n)=n$ and $\operatorname{gcd}\left(f_{m}, f_{n}\right)=f_{n}$, so the induction hypothesis is true.

Now assume $k>0$. By Lemma 4,

$$
f_{n}=f_{m+1} f_{k}+f_{m} f_{k-1}
$$

Since $d=\operatorname{gcd}(m, n)$, we have $d=\operatorname{gcd}(m, n-m)=\operatorname{gcd}(m, k)$ by Lemma 2. Therefore, by induction, $f_{d}=\operatorname{gcd}\left(f_{m}, f_{k}\right)$.

Now we evaluate

$$
\operatorname{gcd}\left(f_{m}, f_{n}\right)=\operatorname{gcd}\left(f_{m}, f_{m+1} f_{n-m}+f_{m} f_{n-m-1}\right)=\operatorname{gcd}\left(f_{m}, f_{m+1} f_{n-m}\right)
$$

by Lemma 2 . As f_{m} and f_{m+1} are relatively prime by Lemma 5 ,

$$
\operatorname{gcd}\left(f_{m}, f_{m+1} f_{n-m}\right)=\operatorname{gcd}\left(f_{m}, f_{n-m}\right)
$$

by Lemma 3.

Now, $\operatorname{gcd}(m, n-m)=\operatorname{gcd}(m, n)=d$ by Lemma 2, and $\max (m, n-m)<n$, so by the induction hypothesis, $\operatorname{gcd}\left(f_{m}, f_{n-m}\right)=f_{d}$. Therefore, $\operatorname{gcd}\left(f_{m}, f_{n}\right)=f_{d}$. That proves $H_{\text {Fib }}(n)$ assuming $H_{\text {Fib }}\left(n^{\prime}\right)$ for all n^{\prime} with $0<n^{\prime}<n$. By the Strong Form of the Principle of Mathematical Induction, $H_{\text {Fib }}(n)$ is true for all $n>0$.

