
Solution to Problem F3
based on solution by Neil Spalter

F1. Look for a pattern in the remainders of the derangement numbers Dn, modulo m.
(The modulus m is the divisor that gives the remainder.) Both the pattern itself and
its length are worth thinking about.

F3. Prove that in F1 there is always a finite repeating pattern, no matter what positive
integer m is.

We’re looking for a period of Dn modm. A period p is a positive integer such that Dn =
Dn+p for every n ≥ 0. (Ideally, we’d like to find the minimum period, since every other
period is a multiple of that, according to a theorem I’m not proving.)

Theorem 1. Let m be a positive integer. The remainders of Dn modulo m repeat every 2m
terms, and if m = 1 or m is even they repeat every m terms.

That is, m or 2m is a period of Dn modm. I’m not saying there is not a shorter period.
That’s still open—any takers?

Proof. We have several equations involving Dn. The ones that are useful here are

(1) Dn = nDn−1 + (−1)n

and

(2) Dn = (n− 1)(Dn−1 + Dn−2).

If we look at these equations modulo m, we notice a couple of things.
First:

If n ≡ 0 modm, then Dn ≡ (−1)n modm.

This follows from Equation (1), since n ≡ 0 modm implies nDn−1 ≡ 0. (If n is a multiple of
m, then so is nDn−1.) Thus, for any integer k ≥ 0,

Dkm ≡ 1 when m is even,(3)

Dkm ≡

{
1 if k is even,

−1 if k is odd,
when m is odd.(4)

(Note that −1 ≡ m− 1 modm.)
Second:

If n ≡ 1 modm, then Dn ≡ 0 modm.
1



2

This follows from Equation (2), since n ≡ 1 modm implies n− 1 ≡ 0 modm, which implies
(n− 1)(Dn−1 + Dn−2) ≡ 0 modm. We get, for any integer k ≥ 0,

Dkm+1 ≡ 0 modm.(5)

Now I will prove the theorem. Let’s compare Dn to Dn+2m first. Using (1) we deduce that

Dn ≡ nDn−1 + (−1)n modm

and

Dn+2m ≡ (n + 2m)Dn−1+2m + (−1)n+2m ≡ nD(n−1)+2m + (−1)n modm,

because n + 2m ≡ nmodm. (Meaning: n + 2m and n have the same remainders upon
division by m; so (n + 2m)Dn−1+2m and nDn−1+2m also have the same remainders.) So,
if Dn−1 ≡ D(n−1)+2m modm, then Dn ≡ Dn+2m modm. But this is just what we need for
induction, provided we get the base case.

The base case is n = 1. By Equation (5), D1 ≡ 0 ≡ D2m+1 modm. Therefore, by induction
on n, Dn modm has a period 2m for all n ≥ 1.

We still need to check that D0 ≡ D2m. By Equations (3) and (4), D2m ≡ 1 ≡ D0 modm.
That concludes the proof that 2m is a period.
Now I prove that m is a period when m is even. It’s almost the same proof. Compare Dn

to Dn+m. Using (1) we deduce that

Dn ≡ nDn−1 + (−1)n modm

and

Dn+m ≡ (n + m)Dn−1+m + (−1)n+m ≡ nD(n−1)+m + (−1)n modm,

because m is even. So, if Dn−1 ≡ D(n−1)+m modm, then Dn ≡ Dn+m modm. This is what
we need for induction, provided we get the base case and the lowest case.

The base case is n = 1. By Equation (5), D1 ≡ 0 ≡ Dm+1 modm. Therefore, by induction
on n, Dn modm has a period m for all n ≥ 1.

We still need to check that D0 ≡ Dm. By Equation (3), Dm ≡ 1 ≡ D0 modm.
That concludes the proof that m is a period for even numbers m.
One more thing to prove: The case m = 1. Every number has the same remainder modulo

1, namely, 0. So, Dn mod 1 is just an infinite sequence of 0’s, giving a period of 1. (Easy!) �

Reminder: I haven’t proved that m or 2m is the minimum period.


