Solution to Problem F3
based on solution by Neil Spalter

F1. Look for a pattern in the remainders of the derangement numbers D_{n}, modulo m. (The modulus m is the divisor that gives the remainder.) Both the pattern itself and its length are worth thinking about.
F3. Prove that in F1 there is always a finite repeating pattern, no matter what positive integer m is.

We're looking for a period of $D_{n} \bmod m$. A period p is a positive integer such that $D_{n}=$ D_{n+p} for every $n \geq 0$. (Ideally, we'd like to find the minimum period, since every other period is a multiple of that, according to a theorem I'm not proving.)

Theorem 1. Let m be a positive integer. The remainders of D_{n} modulo m repeat every $2 m$ terms, and if $m=1$ or m is even they repeat every m terms.

That is, m or $2 m$ is a period of $D_{n} \bmod m$. I'm not saying there is not a shorter period. That's still open - any takers?

Proof. We have several equations involving D_{n}. The ones that are useful here are

$$
\begin{equation*}
D_{n}=n D_{n-1}+(-1)^{n} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{n}=(n-1)\left(D_{n-1}+D_{n-2}\right) . \tag{2}
\end{equation*}
$$

If we look at these equations modulo m, we notice a couple of things.
First:

$$
\text { If } n \equiv 0 \bmod m, \text { then } D_{n} \equiv(-1)^{n} \bmod m
$$

This follows from Equation (1), since $n \equiv 0 \bmod m$ implies $n D_{n-1} \equiv 0$. (If n is a multiple of m, then so is $n D_{n-1}$.) Thus, for any integer $k \geq 0$,

$$
\begin{array}{ll}
D_{k m} \equiv 1 & \text { when } m \text { is even }, \tag{3}\\
D_{k m} \equiv\left\{\begin{array}{cll}
1 & \text { if } k \text { is even, } & \text { when } m \text { is odd } \\
-1 & \text { if } k \text { is odd, } &
\end{array}\right.
\end{array}
$$

(Note that $-1 \equiv m-1 \bmod m$.)
Second:

$$
\text { If } n \equiv 1 \bmod m, \text { then } D_{n} \equiv 0 \bmod m
$$

This follows from Equation (2), since $n \equiv 1 \bmod m$ implies $n-1 \equiv 0 \bmod m$, which implies $(n-1)\left(D_{n-1}+D_{n-2}\right) \equiv 0 \bmod m$. We get, for any integer $k \geq 0$,

$$
\begin{equation*}
D_{k m+1} \equiv 0 \bmod m \tag{5}
\end{equation*}
$$

Now I will prove the theorem. Let's compare D_{n} to $D_{n+2 m}$ first. Using (1) we deduce that

$$
D_{n} \equiv n D_{n-1}+(-1)^{n} \quad \bmod m
$$

and

$$
D_{n+2 m} \equiv(n+2 m) D_{n-1+2 m}+(-1)^{n+2 m} \equiv n D_{(n-1)+2 m}+(-1)^{n} \quad \bmod m
$$

because $n+2 m \equiv n \bmod m$. (Meaning: $n+2 m$ and n have the same remainders upon division by m; so $(n+2 m) D_{n-1+2 m}$ and $n D_{n-1+2 m}$ also have the same remainders.) So, if $D_{n-1} \equiv D_{(n-1)+2 m} \bmod m$, then $D_{n} \equiv D_{n+2 m} \bmod m$. But this is just what we need for induction, provided we get the base case.

The base case is $n=1$. By Equation (5), $D_{1} \equiv 0 \equiv D_{2 m+1} \bmod m$. Therefore, by induction on $n, D_{n} \bmod m$ has a period $2 m$ for all $n \geq 1$.

We still need to check that $D_{0} \equiv D_{2 m}$. By Equations (3) and (4), $D_{2 m} \equiv 1 \equiv D_{0} \bmod m$.
That concludes the proof that $2 m$ is a period.
Now I prove that m is a period when m is even. It's almost the same proof. Compare D_{n} to D_{n+m}. Using (1) we deduce that

$$
D_{n} \equiv n D_{n-1}+(-1)^{n} \quad \bmod m
$$

and

$$
D_{n+m} \equiv(n+m) D_{n-1+m}+(-1)^{n+m} \equiv n D_{(n-1)+m}+(-1)^{n} \quad \bmod m
$$

because m is even. So, if $D_{n-1} \equiv D_{(n-1)+m} \bmod m$, then $D_{n} \equiv D_{n+m} \bmod m$. This is what we need for induction, provided we get the base case and the lowest case.

The base case is $n=1$. By Equation (5), $D_{1} \equiv 0 \equiv D_{m+1} \bmod m$. Therefore, by induction on $n, D_{n} \bmod m$ has a period m for all $n \geq 1$.

We still need to check that $D_{0} \equiv D_{m}$. By Equation (3), $D_{m} \equiv 1 \equiv D_{0} \bmod m$.
That concludes the proof that m is a period for even numbers m.
One more thing to prove: The case $m=1$. Every number has the same remainder modulo 1 , namely, 0 . So, $D_{n} \bmod 1$ is just an infinite sequence of 0 's, giving a period of 1. (Easy!)

Reminder: I haven't proved that m or $2 m$ is the minimum period.

