Stirling's Approximation

First, Stirling's approximation for $n!$; then the approximation to D_{n}.

1. Stirling's Approximation to the Factorial

$$
\begin{equation*}
n!\approx\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n} \tag{1}
\end{equation*}
$$

This is the simplest approximation used when you only need a good estimate. The precise meaning of \approx in (1) is that the quotient of these two quantities approaches 1 :

$$
\lim _{n \rightarrow \infty} \frac{n!}{\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}}=1
$$

The difference is a different story; it gets large. A simple estimate of the difference is:

$$
\begin{equation*}
n!-\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n} \approx\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n} \frac{1}{12 n} . \tag{2}
\end{equation*}
$$

Written as an approximation of $n!$:

$$
\begin{equation*}
n!\approx\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}\left[1+\frac{1}{12 n}\right] . \tag{3}
\end{equation*}
$$

The exact infinite series is:

$$
\begin{equation*}
n!=\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}\left[1+\frac{1}{12 n}+\frac{1}{288 n^{2}}-\frac{139}{51840 n^{3}}-\frac{571}{2488320 n^{4}}+\cdots\right] \tag{4}
\end{equation*}
$$

This series does not converge. You may wonder what good a non-convergent series is. That's a good question. If you take a certain number of terms of the series, you get a very good approximation to $n!$. If you take too many terms,
you get a terrible approximation. The best number of terms to take depends on n; the bigger n is, the more terms you need for the best approximation. This gets very complicated, so mostly we just use (1).

2. Approximating the Derangement Number

From (1) and $D_{n}=[[n!/ e]]$ (here [[]] means take the nearest integer) we get

$$
\begin{equation*}
D_{n} \approx \frac{n^{n}}{e^{n+1}} \sqrt{2 \pi n} \tag{5}
\end{equation*}
$$

The precise meaning of $\approx \mathrm{in}(5)$ is that the quotient approaches 1 :

$$
\lim _{n \rightarrow \infty} \frac{D_{n}}{\frac{n^{n}}{e^{n+1}} \sqrt{2 \pi n}}=1
$$

