STIRLING’S APPROXIMATION

First, Stirling’s approximation for n!; then the approximation to D,,.

1. STIRLING’S APPROXIMATION TO THE FACTORIAL
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This is the simplest approximation used when you only need a good es-
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timate. The precise meaning of ~ in (1) is that the quotient of these two

quantities approaches 1:
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The difference is a different story; it gets large. A simple estimate of the
difference is:
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Written as an approximation of n!:
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The exact infinite series is:
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This series does not converge. You may wonder what good a non-convergent
series is. That’s a good question. If you take a certain number of terms of the
series, you get a very good approximation to n!. If you take too many terms,



you get a terrible approximation. The best number of terms to take depends
on n; the bigger n is, the more terms you need for the best approximation.
This gets very complicated, so mostly we just use (1).

2. APPROXIMATING THE DERANGEMENT NUMBER

From (1) and D,, = [[n!/e]] (here [[ |] means take the nearest integer) we
get
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The precise meaning of ~ in (5) is that the quotient approaches 1:
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