Product Behavior of Avoidance Counts

(Chapter 17, Problem 23)

6 December 2011
The problem is to show that $S_{n}(q) S_{m}(q) \leq S_{n+m}(q)$, where q is any pattern and $n, m>0$. The solution is cute.

Define

$$
\mathcal{S}_{n}(q):=\left\{p \in \operatorname{Perm}_{n} \mid p \text { avoids } q\right\}
$$

so $S_{n}(q)=\left|\mathcal{S}_{n}(q)\right|$. We want to prove that $\left|\mathcal{S}_{n}(q) \times \mathcal{S}_{m}(q)\right| \leq\left|\mathcal{S}_{n+m}(q)\right|$, which we can prove by producing an injective function

$$
\theta: S_{n}(q) \times \mathcal{S}_{m}(q) \rightarrow \mathcal{S}_{n+m}(q)
$$

The hard part is to find the function, that is, to find a definition of $\theta(r, s)$ for $(r, s) \in$ $\mathcal{S}_{n}(q) \times \mathcal{S}_{m}(q)$ such that $\theta(r, s)$ avoids q.

There are two cases. Let $l:=$ the length of q, i.e., q is an l-permutation. So, the largest element in q is l, and obviously the smallest is 1 . In q, either 1 precedes l, or l precedes 1 .

Case 1. 1 precedes l in q. Then define $\theta(r, s):=r \otimes s$, where $r \otimes s$ is the $n+m$ permutation obtained by adding m to every element of r, call this r^{\prime}, and then concatenate r^{\prime} and s, forming $r^{\prime} s$. Pictorially, that means we put r before s but higher.

Case 2. l precedes 1 in q. Then define $\theta(r, s):=r \oplus s$ as defined in the book (Definition 14.13); that is, $r \oplus s$ is the $n+m$-permutation obtained by adding n to every element of s, call this s^{\prime}, and then concatenate r and s^{\prime}, forming $r s^{\prime}$. Pictorially, we put r before s but lower.

Now I have to prove the resulting permutation avoids q.
Proof for Case 1. Here $q_{i}=1$ and $q_{j}=l$ where $i<j$. Suppose we find a q-pattern in $r^{\prime} s$. The q-pattern is a subsequence of $r^{\prime} s$, say $a=a_{1} a_{2} \cdots a_{l}$, whose smallest element is $a_{i}=\min _{1 \leq h \leq l} a_{h}$, corresponding to $q_{i}=1$, and whose largest element is $a_{j}=\max _{1 \leq h \leq l} a_{h}$, corresponding to $q_{j}=l$. a_{i} may be in r^{\prime} or in s.

Suppose a_{i} is in r^{\prime}. Because every element of a is at least as large as a_{1}, while every element of s is smaller than a_{1} (since a_{1} is in r^{\prime}), all of a must be in r^{\prime}. That means r contains a q pattern, but that contradicts the assumption about r.

Suppose a_{i} is in s. Since $j>i, a_{j}$ is also in s. As every element of a is no greater than a_{j}, none of them can be in r^{\prime}. But then a is a subsequence of s, so s contains a q pattern. This contradicts the assumption about s.

Proof for Case 2. Here $q_{i}=l$ and $q_{j}=1$ where $i<j$. Suppose we find a q-pattern in $r s^{\prime}$. The q-pattern is a subsequence of $r s^{\prime}$, say $b=b_{1} b_{2} \cdots b_{l}$, whose largest element is $b_{i}=\max _{1 \leq h \leq l} b_{h}$, corresponding to $q_{i}=l$, and whose smallest element is $b_{j}=\min _{1 \leq h \leq l} b_{h}$, corresponding to $q_{j}=1$. b_{i} may be in r or in s^{\prime}.

Suppose b_{i} is in r. Because every element of b is not larger than b_{1}, while every element of s^{\prime} is larger than b_{1} (since b_{1} is in r), all of b must be in r. That means r contains a q pattern, but that contradicts the assumption about r.

Suppose b_{i} is in s^{\prime}. Since $j>i, b_{j}$ is also in s^{\prime}. As every element of b is no smaller than b_{j}, none of them can be in r. But then b is a subsequence of s^{\prime}, so s contains a q pattern. This contradicts the assumption about s.

Either way, we find a contradiction. Therefore, $\theta(r, s)$ is q-avoiding. So, we have an injection $\mathcal{S}_{n}(q) \times \mathcal{S}_{m}(q) \rightarrow \mathcal{S}_{n+m}(q)$, which proves that $S_{n}(q) S_{m}(q) \leq S_{n+m}(q)$.

