
Rooks in the Staircase
(Chapter 5, Exercise 4)

Math 386, December 1, 2011

The problem in (b) is to count the number of non-attacking placements of k rooks in the
staircase Ferrers diagram, which is the diagram of the partition (n−1, n−2, . . . , 2, 1) of

(
n
2

)
.

A couple of beginning examples:

h(0) = 1, h(1) =

(
n

2

)
,

since with k = 0 we don’t do anything, and with k = 1 we put a rook anywhere. The
pattern is obvious, right? Not yet! I think it’s easier to find a general solution than to infer
a pattern.

Part (a) of the question suggests the answer to (b) is either S(n, k) or S(n, n − k), since
the answer to part (a), the Bell number Bn, is the sum of all Stirling numbers S(n, i) for
fixed n. That guided me in thinking about part (b).

Proposition 0.1. [{P:k-rooks} ] The number of ways to place k nonattacking rooks in the
staircase diagram is S(n, n− k).

Proof. We set up a function θ : Rk → Πn,n−k, where Rk is the set of all possible arrangements
of k rooks in the diagram and Πn,n−k is the set of all partitions of [n] into n− k parts. We
also set up a function ϕ : Πn,n−k → Rk, and we’ll show they are inverse functions. Therefore,
they are bijections, so |Rk| = |Πn,n−k| = S(n, n− k).

The secret trick is to number the rows 1, 2, . . . , n− 1 from top to bottom and number the
columns n, n− 1, . . . , 2 from left to right. This sets up a coordinate system in the diagram.
Every square (x, y) satisfies 1 ≤ x < y ≤ n.

An arrangement of rooks is a set of coordinates of squares, i.e., for k rooks we give k
coordinate pairs. Each rook has coordinates (x, y) that satisfy 1 ≤ x < y ≤ n.

Now let’s define θ. Let R be an arrangement of k rooks. I will define the partition θ(R).
To construct the partition, put two numbers a, b ∈ [n], with a < b, into the same block of
the partition if (but not only if!) there is a rook in R with coordinates (a, b). This tells us
about some pairs, and that implies the partition in which those pairs are in the same block.

For example, suppose n = 6, k = 3, and the three rooks are in positions (1, 6) (the top
left square), (2, 4), and (4, 5); that is, R = {(1, 6), (2, 4), (4, 5)}. Then 1, 6 are in the same
block, and 2, 4, 5 are in the same block. The partition is {16, 245, 3}.

Now let’s define ϕ. Let π = {B1, B2, . . . , Bkl} be a partition of [n]. For each block B,
arrange its elements in increasing order, say a1 < a2 < · · · < am where m = |B|. (That’s the
second secret trick.) Then (a1, a2), (a2, a3), . . . , (am−1, am) will be in the rook arrangement
ϕ(π). Do this for each block and you have ϕ(π).

For example, if n = 7 and π = {134, 27, 5, 6}, then ϕ(π) = {(1, 3), (3, 4), (2, 7)}.
We need to prove these are valid functions with the codomains I claimed for them. First,

if we start with π ∈ Πn,n−k, we certainly get a well-defined rook arrangement. The number

of rooks is |Bi| − 1 for each block, so it =
∑k

i=1(|Bi| − 1) =
∑k

i=1 |Bi| − (n−)k = k. Thus,
ϕ(π) ∈ Rk. So, ϕ is really a function from Πn,n−k to Rk.

If we have R ∈ Rk, we need to prove that θ(R) is a partition of [n] with n− k blocks. We
need to study the structure of a rook arrangement. Suppose it has a rook in position (a, b).
Then no other rook in R can be in row a or column b. Therefore, the only way a can be in

1



a second coordinate pair is to be the y-coordinate, i.e., if there is a rook at (z, a) for some
z < a. Similarly, the only way b can be in another coordinate pair is to be the x-coordinate,
i.e., if there is a rook at (b, c) for some c > b. Furthermore, a and b can only be in at most
two coordinate pairs of rooks in R. It follows that, if we chain the pairs in R together as
follows: (a, b), (b, c), . . . , (e, f), then a < b < c < · · · < e < f and all these numbers are
in the same block of θ(R). Another block might be derived from (a′, b′), (c′, d′), . . . , (e′, f ′),
where a′ < b′ < . . . < e′ < f ′ and they are all different from a, b, c, . . .; so we get a separate
block of θ(R) containing a′, b′, c′, . . . , e′, f ′. Therefore, the blocks of θ(R) are obtained by
chaining together rook coordinates. How many blocks are there? Start with every number
of [n] in a separate block. The first rook combines two numbers in a block. The second rook
combines two blocks into one, and so on. We combine k times, so we have n − k separate
blocks when done. Therefore, θ(R) ∈ Πn,n−k, which is the right set to make θ well defined.

Now that we know ϕ and θ are functions with the right domains and codomains, we need to
show they are inverses. Suppose we take θ(ϕ(R)). Look at what happens to a chained series
of coordinate pairs, (a, b), (b, c), . . . , (e, f). Applying θ, it becomes a block {a, b, c, . . . , e, f}
with a < b < c < · · · < e < f . Applying ϕ to this block we get the original coordinate pairs.
Therefore, θ(ϕ(R)) = R.

Take ϕ(θ(π)). If B ∈ π, say B = {a, b, c, . . . , e, f} with a < b < c < · · · < e < f , then θ(π)
has the coordinate pairs (a, b), (b, c), . . . , (e, f), but no other pairs involving the numbers
a, b, . . . , f . So, when we apply ϕ to θ((π), the coordinates a, b, c, . . . , e, f will be together in
a block, but no other numbers will be in the same block. That is, ϕ(θ(π)) = π.

Since we proved there are inverse functions between Rk and Πn,n−k, those functions are
bijections; therefore |Rk| = |Πn,n−k|. �
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