Rooks in the Staircase

(Chapter 5, Exercise 4)
Math 386, December 1, 2011
The problem in (b) is to count the number of non-attacking placements of k rooks in the staircase Ferrers diagram, which is the diagram of the partition $(n-1, n-2, \ldots, 2,1)$ of $\binom{n}{2}$.

A couple of beginning examples:

$$
h(0)=1, \quad h(1)=\binom{n}{2}
$$

since with $k=0$ we don't do anything, and with $k=1$ we put a rook anywhere. The pattern is obvious, right? Not yet! I think it's easier to find a general solution than to infer a pattern.

Part (a) of the question suggests the answer to (b) is either $S(n, k)$ or $S(n, n-k)$, since the answer to part (a), the Bell number B_{n}, is the sum of all Stirling numbers $S(n, i)$ for fixed n. That guided me in thinking about part (b).

Proposition 0.1. [\{P:k-rooks\}] The number of ways to place k nonattacking rooks in the staircase diagram is $S(n, n-k)$.

Proof. We set up a function $\theta: \mathcal{R}_{k} \rightarrow \Pi_{n, n-k}$, where \mathcal{R}_{k} is the set of all possible arrangements of k rooks in the diagram and $\Pi_{n, n-k}$ is the set of all partitions of $[n]$ into $n-k$ parts. We also set up a function $\varphi: \Pi_{n, n-k} \rightarrow \mathcal{R}_{k}$, and we'll show they are inverse functions. Therefore, they are bijections, so $\left|\mathcal{R}_{k}\right|=\left|\Pi_{n, n-k}\right|=S(n, n-k)$.

The secret trick is to number the rows $1,2, \ldots, n-1$ from top to bottom and number the columns $n, n-1, \ldots, 2$ from left to right. This sets up a coordinate system in the diagram. Every square (x, y) satisfies $1 \leq x<y \leq n$.

An arrangement of rooks is a set of coordinates of squares, i.e., for k rooks we give k coordinate pairs. Each rook has coordinates (x, y) that satisfy $1 \leq x<y \leq n$.

Now let's define θ. Let \mathbf{R} be an arrangement of k rooks. I will define the partition $\theta(\mathbf{R})$. To construct the partition, put two numbers $a, b \in[n]$, with $a<b$, into the same block of the partition if (but not only if!) there is a rook in \mathbf{R} with coordinates (a, b). This tells us about some pairs, and that implies the partition in which those pairs are in the same block.

For example, suppose $n=6, k=3$, and the three rooks are in positions $(1,6)$ (the top left square), $(2,4)$, and $(4,5)$; that is, $\mathbf{R}=\{(1,6),(2,4),(4,5)\}$. Then 1,6 are in the same block, and $2,4,5$ are in the same block. The partition is $\{16,245,3\}$.

Now let's define φ. Let $\pi=\left\{B_{1}, B_{2}, \ldots, B_{k} l\right\}$ be a partition of $[n]$. For each block B, arrange its elements in increasing order, say $a_{1}<a_{2}<\cdots<a_{m}$ where $m=|B|$. (That's the second secret trick.) Then $\left(a_{1}, a_{2}\right),\left(a_{2}, a_{3}\right), \ldots,\left(a_{m-1}, a_{m}\right)$ will be in the rook arrangement $\varphi(\pi)$. Do this for each block and you have $\varphi(\pi)$.

For example, if $n=7$ and $\pi=\{134,27,5,6\}$, then $\varphi(\pi)=\{(1,3),(3,4),(2,7)\}$.
We need to prove these are valid functions with the codomains I claimed for them. First, if we start with $\pi \in \Pi_{n, n-k}$, we certainly get a well-defined rook arrangement. The number of rooks is $\left|B_{i}\right|-1$ for each block, so it $=\sum_{i=1}^{k}\left(\left|B_{i}\right|-1\right)=\sum_{i=1}^{k}\left|B_{i}\right|-(n-) k=k$. Thus, $\varphi(\pi) \in \mathcal{R}_{k}$. So, φ is really a function from $\Pi_{n, n-k}$ to \mathcal{R}_{k}.

If we have $\mathbf{R} \in \mathcal{R}_{k}$, we need to prove that $\theta(\mathbf{R})$ is a partition of $[n]$ with $n-k$ blocks. We need to study the structure of a rook arrangement. Suppose it has a rook in position (a, b). Then no other rook in \mathbf{R} can be in row a or column b. Therefore, the only way a can be in
a second coordinate pair is to be the y-coordinate, i.e., if there is a rook at (z, a) for some $z<a$. Similarly, the only way b can be in another coordinate pair is to be the x-coordinate, i.e., if there is a rook at (b, c) for some $c>b$. Furthermore, a and b can only be in at most two coordinate pairs of rooks in \mathbf{R}. It follows that, if we chain the pairs in \mathbf{R} together as follows: $(a, b),(b, c), \ldots,(e, f)$, then $a<b<c<\cdots<e<f$ and all these numbers are in the same block of $\theta(\mathbf{R})$. Another block might be derived from $\left(a^{\prime}, b^{\prime}\right),\left(c^{\prime}, d^{\prime}\right), \ldots,\left(e^{\prime}, f^{\prime}\right)$, where $a^{\prime}<b^{\prime}<\ldots<e^{\prime}<f^{\prime}$ and they are all different from a, b, c, \ldots; so we get a separate block of $\theta(\mathbf{R})$ containing $a^{\prime}, b^{\prime}, c^{\prime}, \ldots, e^{\prime}, f^{\prime}$. Therefore, the blocks of $\theta(\mathbf{R})$ are obtained by chaining together rook coordinates. How many blocks are there? Start with every number of $[n]$ in a separate block. The first rook combines two numbers in a block. The second rook combines two blocks into one, and so on. We combine k times, so we have $n-k$ separate blocks when done. Therefore, $\theta(\mathbf{R}) \in \Pi_{n, n-k}$, which is the right set to make θ well defined.

Now that we know φ and θ are functions with the right domains and codomains, we need to show they are inverses. Suppose we take $\theta(\varphi(\mathbf{R}))$. Look at what happens to a chained series of coordinate pairs, $(a, b),(b, c), \ldots,(e, f)$. Applying θ, it becomes a block $\{a, b, c, \ldots, e, f\}$ with $a<b<c<\cdots<e<f$. Applying φ to this block we get the original coordinate pairs. Therefore, $\theta(\varphi(\mathbf{R}))=\mathbf{R}$.

Take $\varphi(\theta(\pi))$. If $B \in \pi$, say $B=\{a, b, c, \ldots, e, f\}$ with $a<b<c<\cdots<e<f$, then $\theta(\pi)$ has the coordinate pairs $(a, b),(b, c), \ldots,(e, f)$, but no other pairs involving the numbers a, b, \ldots, f. So, when we apply φ to $\theta((\pi)$, the coordinates a, b, c, \ldots, e, f will be together in a block, but no other numbers will be in the same block. That is, $\varphi(\theta(\pi))=\pi$.

Since we proved there are inverse functions between \mathcal{R}_{k} and $\Pi_{n, n-k}$, those functions are bijections; therefore $\left|\mathcal{R}_{k}\right|=\left|\Pi_{n, n-k}\right|$.

