Subdesigns (Solution of Ch. 18, Problem 40)
 December 10, 2011

We have a (v, k, λ)-design $\mathcal{D}=\left(S, \mathcal{B}_{\mathcal{D}}\right)$ and a (w, k, λ)-design $\mathcal{F}=\left(Q, \mathcal{B}_{\mathcal{F}}\right)$ such that $Q \subseteq S$ and $\mathcal{B}_{\mathcal{F}} \subseteq \mathcal{B}_{\mathcal{D}}$ and $w<v$. We're supposed to prove that $w \leq \lambda(v-1) /(k-1)$. We may assume $k \geq 2$, as otherwise we'd be dividing by zero.

The fact that every block of \mathcal{F} is a block of \mathcal{D} does not necessarily mean (to me) that it has the same points as a block in both designs. However, since the block size in \mathcal{F} is the same as that in \mathcal{D}, it seems obvious that a block of \mathcal{F} has the same points in \mathcal{F} as it does in D.

Lemma 1. [\{L:subdesign \}] There are three kinds of block of \mathcal{D}.
(0) Blocks disjoint from Q.
(1) Blocks that contain just one point of Q.
(2) Blocks that are contained in Q.

Furthermore, $\mathcal{B}_{\mathcal{F}}=\left\{B \in \mathcal{B}_{\mathcal{D}}: B \subseteq Q\right\}$.
Proof. For the first part, I should prove that a block (of \mathcal{D}) that contains more than one point of Q is a subset of Q. Assume B is such a block and let $q_{1}, q_{2} \in B \cap Q$. Since there are λ blocks of \mathcal{D} on $\left\{q_{1}, q_{2}\right\}$ and there are also λ blocks of \mathcal{F} on $\left\{q_{1}, q_{2}\right\}$, every block of \mathcal{D} that contains $\left\{q_{1}, q_{2}\right\}$ must be a block of \mathcal{F}. A block of \mathcal{F} is necessarily a subset of Q. That proves the first part.

In particular, $B \in \mathcal{B}_{\mathcal{F}}$. Therefore, every block of type (2) is a block of \mathcal{F}; that is, $\mathcal{B}_{\mathcal{F}} \supseteq$ $\left\{B \in \mathcal{B}_{\mathcal{D}}: B \subseteq Q\right\}$. Since every block of \mathcal{F} is contained in Q, we have the second part.

Now we count the blocks on a point $y \notin Q$. (Such a point y exists because $v>w$.) Let's count the pairs (q, B) such that $q \in Q$ and B is a block that contains both q and y. (Such a block must be of type (1).)

First, if we pick q there are λ blocks that contain both q and y. There are w ways to pick q so there are $w \lambda$ pairs (q, B).

Second, we can pick B, a block of type (1) containing y, first, and then pick the point $q \in B \cap Q$. Let r_{1} be the number of ways to pick B; there are r_{1} pairs because there's only one $q \in B \cap Q$. Thus, there are r_{1} pairs (q, B).

Now, $r_{1} \leq r$, the total number of blocks that contain y. So, $w \lambda=r_{1} \leq r=\lambda(v-1) /(k-1)$. Dividing by λ, we obtain the inequality

$$
w \leq \frac{v-1}{k-1} .
$$

Q.E.D.

