
Stirling’s Approximation and Derangement Numbers

First, Stirling’s approximation for n!; then binomial coefficients, then Dn.

1. Stirling’s Approximation

1.1. Stirling’s Approximation to the Factorial.

Stirling’s approximation is

(1) n! ≈
(n
e

)n√
2πn.

This is the simplest approximation used when you only need a good estimate. The precise
meaning of ≈ in (1) is that the quotient of these two quantities approaches 1:

lim
n→∞

n!(
n
e

)n√
2πn

= 1.

The difference is a different story; it gets large. A simple estimate of the difference is:

(2) n!−
(n
e

)n√
2πn ≈

(n
e

)n√
2πn

1

12n
.

Written as an approximation of n!:

(3) n! ≈
(n
e

)n√
2πn

[
1 +

1

12n

]
.

The exact infinite series is:

(4) n! =
(n
e

)n√
2πn

[
1 +

1

12n
+

1

288n2
− 139

52840n3
− 571

2488320n4
+ · · ·

]
.

This series does not converge. You may wonder what good a non-convergent series is. Thats
a good question. If you take a certain number of terms of the series, you get a very good
approximation to n!. If you take too many terms, you get a terrible approximation. The
best number of terms to take depends on n; the bigger n is, the more terms you need for the
best approximation. This gets very complicated, so mostly we just use (1).

1.2. Approximating Binomial Coefficients and Catalan Numbers.

As one of the more useful applications, let’s approximate
(
2n
n

)
, the middle binomial coef-

ficient (in row 2n of Pascal’s triangle).(
2n

n

)
=

(2n)!

n!2
≈ (2n/e)2n ·

√
2π · 2n[

(n/e)n ·
√

2πn
]2 =

4n(n/e)2n · 2
√
πn

(n/e)2n · 2πn
=

4n

√
πn

.(5)

This is a remarkably simple formula, even for a crude estimate. Applying it to the Catalan
number Cn,

Cn =
1

n+ 1

(
2n

n

)
≈ 4n

n
√
πn

.(6)
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Equation (5) gives an approximation to
(

m
1
2
m

)
(when m is even). Let’s try this for other

fractions. Say,
(
m
k

)
where k ≈ p

q
m for a fixed proportion p

q
such that 0 < p

q
< 1 (i.e.,

0 < p < q).(
m

k

)
=

m!

k!(m− k)!
≈ (m/e)m ·

√
2πm[

(k/e)k ·
√

2πk
] [

((m− k)/e)m−k ·
√

2π(m− k)
]

≈ (m/e)m ·
√

2πm

(p
q
m/e)

p
q
m( q−p

q
m/e)

q−p
q

m · 2πm
√

p
q
q−p
q

=
(m/e)m[

(p
q
)
p
q ( q−p

q
)
q−p
q
]m

(m/e)
p
q
m+ q−p

q
m ·
√

2πm
√

p
q
q−p
q

=

[(
q

p

)p(
q

q − p

)q−p
]m/q

1√
2πm

q√
p(q − p)

because p
q
m+ q−p

q
m = m,

=

[
qq

pp(q − p)q−p

]m/q
q√

p(q − p)
1√

2πm
.

Summarizing,

(7)

(
m

k

)
≈
[

q

[pp(q − p)q−p]1/q

]m
q√

p(q − p)
1√

2πm
.

For instance, if k ≈ 1
2
m, so that p

q
= 1

2
, we get the approximation(

m
1
2
m

)
≈
[

2

[11(2− 1)2−1]1/2

]m
2√

1(2− 1)

1√
2πm

= 2m 1√
π(m/2)

,

which agrees with Equation (5). If k ≈ 1
3
m, we get(

m
1
3
m

)
≈
[

3

[11(3− 1)3−1]1/3

]m
3√

1(3− 1)

1√
2πm

=

[
3
3
√

4

]m
3

2
√
πm

.

Finally, if k ≈ 1
4
m, then(

m
1
4
m

)
≈
[

4

[11(4− 1)4−1]1/4

]m
4√

1(4− 1)

1√
2πm

=

[
4

33/4

]m
4√

6πm
.
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2. Approximations of the Derangement Numbers

2.1. Calculus-Based Approximation to the Derangement Numbers.

This is the amazingly simple formula (I know of no similar examples):

(8) Dn = [[n!/e]],

where [[ ]] means take the nearest integer. To prove this we take the factorial formula for
Dn:

(9) Dn = n!
n∑

j=0

(−1)j
1

j!

and compare it to the power series for ex with x = −1:

e−1 =
∞∑
j=0

(−1)j
1

j!
.

We see that Dn/n! is simply the n-th Taylor polynomial of e−1. Furthermore, the series
for e−1 satisfies the requirement of the Alternating Series Test: The terms alternate in sign,
they are decreasing in absolute value, and they approach 0. Therefore, we can apply the
Alternating Series Error Test: the error if we stop at term n is less than the (absolute value
of the) next term. The error is |e−1 − Dn/n!|. The (absolute value of the) next term is
1/(n+ 1)!, so ∣∣∣∣Dn

n!
− 1

e

∣∣∣∣ < 1

(n+ 1)!
.

Now, multiply by n!; this gives ∣∣∣∣Dn −
n!

e

∣∣∣∣ < 1

n+ 1
.

If n ≥ 1, then 1/(n+ 1) ≤ 1/2; therefore,∣∣∣∣Dn −
n!

e

∣∣∣∣ < 1

2
.

There can be only one integer within < 1/2 of a real number, so Dn is indeed the nearest
integer to n!/e. We have proved (8) for n > 0. It also happens to be true for n = 0, so (8)
is valid for every n such that Dn is defined.

2.2. Stirling’s Approximation to the Derangement Number.

From (1) and (8) (rewritten as Dn ≈ n!/e) we get

(10) Dn ≈
nn

en+1

√
2πn.

The precise meaning of ≈ in (10) is that the quotient approaches 1:

lim
n→∞

Dn

/ nn

en+1

√
2πn = 1.
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How good is this approximation? It’s not clear. Let’s look at the data. We calculate for
small values of n:

n n!/e Dn Stirling approximation

0 .37 1 0

1 .37 0
√

2π/e2 ≈ 0.12

2 .74 1 4
√

4π/e3 ≈ 0.71

3 2.21 2 27
√

6π/e4 ≈ 2.15

4 8.83 9 256
√

8π/e5 ≈ 8.65

5 44.15 44 3125
√

10π/e6 ≈ 43.42

6 264.87 265 46656
√

12π/e7 ≈ 261.22

7 1854.1 1854 823543
√

14π/e8 ≈ 1832.19

8 14832.9 14832 16777216
√

16π/e9 ≈ 14679.27

Conclusion: We don’t get nearly as accurate an approximation from Stirling’s formula as
with n!/e. That shows how exceptionally good an approximation n!/e is; it’s much closer
than most approximations. Stirling’s approximation to Dn is more typical: the absolute
error gets larger but the proportional error gets smaller as n increases.
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