Stirling's Approximation and Derangement Numbers

First, Stirling's approximation for $n!$; then binomial coefficients, then D_{n}.

1. Stirling's Approximation

1.1. Stirling's Approximation to the Factorial.

Stirling's approximation is

$$
\begin{equation*}
n!\approx\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n} \tag{1}
\end{equation*}
$$

This is the simplest approximation used when you only need a good estimate. The precise meaning of \approx in (1) is that the quotient of these two quantities approaches 1 :

$$
\lim _{n \rightarrow \infty} \frac{n!}{\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}}=1
$$

The difference is a different story; it gets large. A simple estimate of the difference is:

$$
\begin{equation*}
n!-\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n} \approx\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n} \frac{1}{12 n} \tag{2}
\end{equation*}
$$

Written as an approximation of $n!$:

$$
\begin{equation*}
n!\approx\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}\left[1+\frac{1}{12 n}\right] . \tag{3}
\end{equation*}
$$

The exact infinite series is:

$$
\begin{equation*}
n!=\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}\left[1+\frac{1}{12 n}+\frac{1}{288 n^{2}}-\frac{139}{52840 n^{3}}-\frac{571}{2488320 n^{4}}+\cdots\right] . \tag{4}
\end{equation*}
$$

This series does not converge. You may wonder what good a non-convergent series is. Thats a good question. If you take a certain number of terms of the series, you get a very good approximation to n !. If you take too many terms, you get a terrible approximation. The best number of terms to take depends on n; the bigger n is, the more terms you need for the best approximation. This gets very complicated, so mostly we just use (1).

1.2. Approximating Binomial Coefficients and Catalan Numbers.

As one of the more useful applications, let's approximate $\binom{2 n}{n}$, the middle binomial coefficient (in row $2 n$ of Pascal's triangle).

$$
\begin{equation*}
\binom{2 n}{n}=\frac{(2 n)!}{n!^{2}} \approx \frac{(2 n / e)^{2 n} \cdot \sqrt{2 \pi \cdot 2 n}}{\left[(n / e)^{n} \cdot \sqrt{2 \pi n}\right]^{2}}=\frac{4^{n}(n / e)^{2 n} \cdot 2 \sqrt{\pi n}}{(n / e)^{2 n} \cdot 2 \pi n}=\frac{4^{n}}{\sqrt{\pi n}} \tag{5}
\end{equation*}
$$

This is a remarkably simple formula, even for a crude estimate. Applying it to the Catalan number C_{n},

$$
\begin{equation*}
C_{n}=\frac{1}{n+1}\binom{2 n}{n} \approx \frac{4^{n}}{n \sqrt{\pi n}} \tag{6}
\end{equation*}
$$

Equation (5) gives an approximation to $\binom{m}{\frac{1}{2} m}$ (when m is even). Let's try this for other fractions. Say, $\binom{m}{k}$ where $k \approx \frac{p}{q} m$ for a fixed proportion $\frac{p}{q}$ such that $0<\frac{p}{q}<1$ (i.e., $0<p<q$).

$$
\begin{aligned}
\binom{m}{k}=\frac{m!}{k!(m-k)!} & \approx \frac{(m / e)^{m} \cdot \sqrt{2 \pi m}}{\left[(k / e)^{k} \cdot \sqrt{2 \pi k}\right]\left[((m-k) / e)^{m-k} \cdot \sqrt{2 \pi(m-k)}\right]} \\
& \approx \frac{(m / e)^{m} \cdot \sqrt{2 \pi m}}{\left(\frac{p}{q} m / e\right)^{\frac{p}{q} m}\left(\frac{q-p}{q} m / e\right)^{\frac{q-p}{q} m} \cdot 2 \pi m \sqrt{\frac{p}{q} \frac{q-p}{q}}} \\
& =\frac{(m / e)^{m}}{\left[\left(\frac{p}{q}\right)^{\frac{p}{q}}\left(\frac{q-p}{q}\right)^{\frac{q-p}{q}}\right]^{m}\left(m / e e^{\frac{p}{q} m+\frac{q-p}{q} m} \cdot \sqrt{2 \pi m} \sqrt{\frac{p}{q} \frac{q-p}{q}}\right.} \\
& =\left[\left(\frac{q}{p}\right)^{p}\left(\frac{q}{q-p}\right)^{q-p}\right]^{m / q} \frac{1}{\sqrt{2 \pi m}} \frac{q}{\sqrt{p(q-p)}}
\end{aligned}
$$

because $\frac{p}{q} m+\frac{q-p}{q} m=m$,

$$
=\left[\frac{q^{q}}{p^{p}(q-p)^{q-p}}\right]^{m / q} \frac{q}{\sqrt{p(q-p)}} \frac{1}{\sqrt{2 \pi m}} .
$$

Summarizing,

$$
\begin{equation*}
\binom{m}{k} \approx\left[\frac{q}{\left[p^{p}(q-p)^{q-p}\right]^{1 / q}}\right]^{m} \frac{q}{\sqrt{p(q-p)}} \frac{1}{\sqrt{2 \pi m}} \tag{7}
\end{equation*}
$$

For instance, if $k \approx \frac{1}{2} m$, so that $\frac{p}{q}=\frac{1}{2}$, we get the approximation

$$
\binom{m}{\frac{1}{2} m} \approx\left[\frac{2}{\left[1^{1}(2-1)^{2-1}\right]^{1 / 2}}\right]^{m} \frac{2}{\sqrt{1(2-1)}} \frac{1}{\sqrt{2 \pi m}}=2^{m} \frac{1}{\sqrt{\pi(m / 2)}}
$$

which agrees with Equation (5). If $k \approx \frac{1}{3} m$, we get

$$
\binom{m}{\frac{1}{3} m} \approx\left[\frac{3}{\left[1^{1}(3-1)^{3-1}\right]^{1 / 3}}\right]^{m} \frac{3}{\sqrt{1(3-1)}} \frac{1}{\sqrt{2 \pi m}}=\left[\frac{3}{\sqrt[3]{4}}\right]^{m} \frac{3}{2 \sqrt{\pi m}} .
$$

Finally, if $k \approx \frac{1}{4} m$, then

$$
\binom{m}{\frac{1}{4} m} \approx\left[\frac{4}{\left[1^{1}(4-1)^{4-1}\right]^{1 / 4}}\right]^{m} \frac{4}{\sqrt{1(4-1)}} \frac{1}{\sqrt{2 \pi m}}=\left[\frac{4}{3^{3 / 4}}\right]^{m} \frac{4}{\sqrt{6 \pi m}}
$$

2. Approximations of the Derangement Numbers

2.1. Calculus-Based Approximation to the Derangement Numbers.

This is the amazingly simple formula (I know of no similar examples):

$$
\begin{equation*}
D_{n}=[[n!/ e]], \tag{8}
\end{equation*}
$$

where [[]] means take the nearest integer. To prove this we take the factorial formula for D_{n} :

$$
\begin{equation*}
D_{n}=n!\sum_{j=0}^{n}(-1)^{j} \frac{1}{j!} \tag{9}
\end{equation*}
$$

and compare it to the power series for e^{x} with $x=-1$:

$$
e^{-1}=\sum_{j=0}^{\infty}(-1)^{j} \frac{1}{j!} .
$$

We see that D_{n} / n ! is simply the n-th Taylor polynomial of e^{-1}. Furthermore, the series for e^{-1} satisfies the requirement of the Alternating Series Test: The terms alternate in sign, they are decreasing in absolute value, and they approach 0 . Therefore, we can apply the Alternating Series Error Test: the error if we stop at term n is less than the (absolute value of the) next term. The error is $\left|e^{-1}-D_{n} / n!\right|$. The (absolute value of the) next term is $1 /(n+1)$!, so

$$
\left|\frac{D_{n}}{n!}-\frac{1}{e}\right|<\frac{1}{(n+1)!}
$$

Now, multiply by $n!$; this gives

$$
\left|D_{n}-\frac{n!}{e}\right|<\frac{1}{n+1} .
$$

If $n \geq 1$, then $1 /(n+1) \leq 1 / 2$; therefore,

$$
\left|D_{n}-\frac{n!}{e}\right|<\frac{1}{2} .
$$

There can be only one integer within $<1 / 2$ of a real number, so D_{n} is indeed the nearest integer to $n!/ e$. We have proved (8) for $n>0$. It also happens to be true for $n=0$, so (8) is valid for every n such that D_{n} is defined.

2.2. Stirling's Approximation to the Derangement Number.

From (1) and (8) (rewritten as $D_{n} \approx n!/ e$) we get

$$
\begin{equation*}
D_{n} \approx \frac{n^{n}}{e^{n+1}} \sqrt{2 \pi n} \tag{10}
\end{equation*}
$$

The precise meaning of \approx in (10) is that the quotient approaches 1 :

$$
\lim _{n \rightarrow \infty} D_{n} / \frac{n^{n}}{e^{n+1}} \sqrt{2 \pi n}=1
$$

How good is this approximation? It's not clear. Let's look at the data. We calculate for small values of n :

n	$n!/ e$	D_{n}	Stirling approximation
0	.37	1	0
1	.37	0	$\sqrt{2 \pi} / e^{2} \approx 0.12$
2	.74	1	$4 \sqrt{4 \pi} / e^{3} \approx 0.71$
3	2.21	2	$27 \sqrt{6 \pi} / e^{4} \approx 2.15$
4	8.83	9	$256 \sqrt{8 \pi} / e^{5} \approx 8.65$
5	44.15	44	$3125 \sqrt{10 \pi} / e^{6} \approx 43.42$
6	264.87	265	$46656 \sqrt{12 \pi} / e^{7} \approx 261.22$
7	1854.1	1854	$823543 \sqrt{14 \pi} / e^{8} \approx 1832.19$
8	14832.9	14832	$16777216 \sqrt{16 \pi} / e^{9} \approx 14679.27$

Conclusion: We don't get nearly as accurate an approximation from Stirling's formula as with $n!/ e$. That shows how exceptionally good an approximation $n!/ e$ is; it's much closer than most approximations. Stirling's approximation to D_{n} is more typical: the absolute error gets larger but the proportional error gets smaller as n increases.

