Math 386 2012/11/20 TEST II Name SOLUTIONS

e Start each numbered problem on a fresh page.

e Hand in both this paper and test booklet.

e Show all your work for each problem; show enough work to fully justify your answer.

e Simplify answers as much as possible.

e All numerical answers may be in terms of actual numbers, factorials, falling factorials,
and binomial coefficients; but not multinomial coefficients, for instance.

(1) [Points: 2] Did you read the instructions and will you follow them? Ans.

(2) [Points: 15] Use generating functions to find an explicit formula for a,,, n > 0, given
that a,, = 3a,,—1 + 2" for n > 0 and ag = 1.

Solution. Let A(x) =3  a,z", the OGF of a,. Then

1 2 3 0
Azr) = = — = —2(2" 3(3™) | 2"
so a, = —2"T1 4+ 371 Quick check: The formula gives ag = —2' + 3! = 1, agreeing

with the initial condition stated in the problem.

(3) [Points: 12] Find a closed formula for the ordinary generating function of the numbers
h,, where h,, is the number of compositions of n into parts that are either 2 or 5.
(Don’t solve for h,,.)

Solution. Let H(x) be the OGF of h,. Thinking of [n] as an interval of length
n, we want to split it up into any number of subintervals of lengths 2 and 5. That
will represent a unique composition whose parts (corresponding to the subintervals)
are equal to 2 or 5. Let a; be the number of ways we can have an interval of length
k in a composition. Then ay = as = 1, but all other a = 0. The OGF of ay is
A(z) = 12 + 12°. The general theory says

1 1

H(x)zl—A(gj)zl—x2—fL‘5.

(4) [Points: 10] Count the inversions in the permutation and find the parity of the
permutation.
(a) p=412356

Solution. The inversions are 41, 42, 43. There are 3 of them, so p is odd.
(b) ¢ = (412)(356)

Solution. We first have to put ¢ into one-line form; that is, ¢ = 245163. The
number of inversions that begin with 1 is 0, with 2 is 1, with 3 is 0, with 4 is 2,
with 5 is 2, with 6 is 1. The total number of inversions is 6, so ¢ is even.



(5) [Points: 12] Prove that the number of odd permutations of [n] equals the number of
even permutations of [n].

Solution. First proof. Let’s define Perm,(n) to be the set of even permutations and
Perm,(n) to be the set of odd permutations. We define a function 6 : Perm.(n) —
Perm(n) defined by 0(p) = p with 1 and 2 interchanged. This changes the number of
inversions by 1 (increase or decrease), because if we consider any pair p;p; where ¢ < j,
it remains in the same order in 6(p) in every case except when {p;, p;} = {1,2}. This
proves that 6(p) is odd. The same rule defines a function €' : Perm,(n) — Perm.(n).
It’s clear that #' is the inverse function of 6. Therefore, 6 is a bijection, hence
Perm,(n)| = | Perm,(n).

Second proof. The setup is the same, but I define 0(p) = popips- - - pn, where
D = p1P2pPs - Pn, i.€., interchange the first two elements of p.

(6) [Points: 10] Let g be the function (as described in the book) that converts a per-
mutation of [n] with & cycles into a permutation of [n] with & left-to-right maxima.
Find ¢(p) where p = (412)(356).

Solution. First we have to express p in canonical cycle form: p = (412)(635). Then
we erase the parentheses, getting g(p) = 412635.

(7) [Points: 12] Find the value of s(n,2) for n > 1, where s(n, k) denotes the Stirling
number of the first kind.

Solution. First method. We know s(n,2) = (—1)""%¢(n,2) = (—1)"c(n,2) where
¢(n,2) is the number of permutations of [n] with exactly two cycles. We need a
formula for ¢(n, 2).

To get two cycles, first we choose a nonempty subset S C [n] and its complement,
T = [n]\ S. Then we turn S and 7" into cycles. Since the number of ways to do
that depends on |S| and |T|, we organize this computation by k& = |S|. We choose
0 < k < n. Then we choose S of size k; there are (Z) ways to do that. Then
we convert S into a cycle; there are (k — 1)! ways to do so; and we convert 7" into
a cycle; there are (n — k — 1)! ways to do that. Finally, we sum over k, getting

3 () k- )l — k- 1)

However, we have to divide by 2, because we counted the same pair of sets, {S, 7'},
twice, once for S and once for T'. So,

c(n, k) = %nz_l (Z) (k—Dl(n—k—1).

k=1

The final answer, after simplification, is
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Solution. Second method. Start the same way. To avoid duplication, we choose S

to contain 1. Then, for each k£ in 0 < k£ < n, there are (Zj) choices for S. Counting
2



the number of ways to make S and 7" into cycles, we get

c(n,k)—i(Zj)(k—1>(n—k—1'— n—l'zn ]1{;

k=1
If we replace 7 = n — k in the last summation, we get

n—1
1 1 1
s(n,2) = "(n—1)! Z ) (n —1)! [1—{—5—1—“-—1—”_1].

The methods seem to give different answers. 1 infer that there’s an equation that
shows they are not different. I know what it is! Do you?
Other possible answers. For instance,

( (n—1)/2 )
— 1)l T
(—1)"n ; = Dm k=1 if n is odd,
s(n,2) = )2
1 1
(—1)"n! + — if n is even.
\ ; (E=1(n—-k—-1) 2(5—1)

(Some people found answers like this, but with binomial coefficients instead of all my
simplifications.)

(8) [Points: 12] Find the number of permutations p of [10] such that p(i) # ¢ for all even
numbers i € [10].

Solution. This is a task for PIE. We have the universe U = Perm(10). We want to
avoid the properties p(i) = i, for every even i € [10]. Thus, let A; = {p € U : py; = 2i}
fori =1,2,3,4,5. We want the value of

‘A1FWAQFYASFLA4FWA5
:|[”-—|A1LLA2LLA3LLA4U44Q

= U= 1A+ )0 1A nAyl— )0 A, NA, N Al

1<H 11 <12<5 11 <12<13<5
+ ) AN A, N AL N A = [A N Ay N AgN Ay N As).
11<12<13<i4<5

Now we compute |U| = 10!, |A;| = 9! because one position is fixed, |A4;, N A;,| = 8!
because two positions are fixed, etc. That is, the intersection of k subsets A; has size
(10 — k)!. Also, there are (2) such intersections. Thus,

|A1 N Ay N Ay N Ay N As
10 10 10 10 10
= 10! — I+ I — ! I— L.

(9) [Points: 15| How many compositions of n [mistakenly printed as [n] on the test] into
four parts have no part equal to 3?7 (Assume n > 12.)

Solution. Another PIE problem. Let U be the set of all compositions of n into
four parts. Thus, |U| = ("gl) A composition looks like this: ny + ny + nsg +ny = n,
3



where all n; > 0. We wish to avoid the four properties n; = 3, ny = 3, ng = 3, and
ng = 3. Thus, let A; be the set of compositions in which n; = 3; then the desired
number is

|A1 N Ay N Az N Ay

= |U| - |A1UA2UA3UA4|

= U= 1A+ D JAnA = >0 AN AN A

i<4 i<j<4 i<j<k<4

+]A; N AN AN Ayl

To compute |A;], note that if n; = 3 we are simply composing n — 3 into three
parts, no + n3 + ny = n — 3. The number of ways to do that is (”;4). Thus, all
|Ai| = (","). There are 4 A4;s.

To compute |A; N Ay| (or any |A; N A,|), if ny = ny = 3, we are simply composing
n — 6 into two parts; the number of ways to do so is ("17) For the same reason, any
|4, N A;| = ("17) There are (3) = 6 such pairs.

To compute |A; N Ay N As|, note that we are simply composing n — 9 into one part:
there is one way of doing this, since n — 9 > 0. Thus, any |4; N A; N A,| = (”Bw).
There are (g) = 4 such triples.

Finally, |A; N A2 N A3 N Ay is the number of ways to compose n — 12 into no parts,
none equal to three. Here we have to be more careful. As there are no parts, none of
them can possibly equal 3, so we are counting compositions of n — 12 into no parts.
Since n — 12 > 0, there are two cases. If n = 12, there is one way to compose n — 12
into no parts, i.e., take no parts, whose sum is 0. If n > 12, there are no ways to
compose n — 12 into no parts, since n — 12 > 0.

The answer is therefore:

\Al m[lmﬁmfh\

n—1 n—4 n—7 n — 10 0 ifn=12,
:< 3 >_4< 2 >+6< 1 >_4< 0 )+{1 if 0> 12
{(131)—4(§)+6(§)—4+1:80 if n =12,

(3 =45 +6() -4 ifn>12

(Either of these is a correct answer.)



