- Start each numbered problem on a fresh page.
- Hand in both this paper and test booklet.
- Show all your work for each problem; show enough work to fully justify your answer.
- Simplify answers as much as possible.
- All numerical answers may be in terms of actual numbers, factorials, falling factorials, and binomial coefficients; but not multinomial coefficients, for instance.
(1) [Points: 2] Did you read the instructions and will you follow them? Ans. \qquad
(2) [Points: 15] Use generating functions to find an explicit formula for $a_{n}, n \geq 0$, given that $a_{n}=3 a_{n-1}+2^{n}$ for $n>0$ and $a_{0}=1$.

Solution. Let $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, the OGF of a_{n}. Then

$$
A(x)=\frac{1}{(1-2 x)(1-3 x)}=-\frac{2}{1-2 x}+\frac{3}{1-3 x}=\sum_{n=0}^{\infty}\left[-2\left(2^{n}\right)+3\left(3^{n}\right)\right] x^{n}
$$

so $a_{n}=-2^{n+1}+3^{n+1}$. Quick check: The formula gives $a_{0}=-2^{1}+3^{1}=1$, agreeing with the initial condition stated in the problem.
(3) [Points: 12] Find a closed formula for the ordinary generating function of the numbers h_{n}, where h_{n} is the number of compositions of n into parts that are either 2 or 5 . (Don't solve for h_{n}.)

Solution. Let $H(x)$ be the OGF of h_{n}. Thinking of $[n]$ as an interval of length n, we want to split it up into any number of subintervals of lengths 2 and 5. That will represent a unique composition whose parts (corresponding to the subintervals) are equal to 2 or 5 . Let a_{k} be the number of ways we can have an interval of length k in a composition. Then $a_{2}=a_{5}=1$, but all other $a_{k}=0$. The OGF of a_{k} is $A(x)=1 x^{2}+1 x^{5}$. The general theory says

$$
H(x)=\frac{1}{1-A(x)}=\frac{1}{1-x^{2}-x^{5}} .
$$

(4) [Points: 10] Count the inversions in the permutation and find the parity of the permutation.
(a) $p=412356$

Solution. The inversions are 41, 42, 43. There are 3 of them, so p is odd.
(b) $q=(412)(356)$

Solution. We first have to put q into one-line form; that is, $q=245163$. The number of inversions that begin with 1 is 0 , with 2 is 1 , with 3 is 0 , with 4 is 2 , with 5 is 2 , with 6 is 1 . The total number of inversions is 6 , so q is even.
(5) [Points: 12] Prove that the number of odd permutations of $[n]$ equals the number of even permutations of $[n]$.

Solution. First proof. Let's define $\operatorname{Perm}_{e}(n)$ to be the set of even permutations and $\operatorname{Perm}_{o}(n)$ to be the set of odd permutations. We define a function $\theta: \operatorname{Perm}_{e}(n) \rightarrow$ $\operatorname{Perm}(n)$ defined by $\theta(p)=p$ with 1 and 2 interchanged. This changes the number of inversions by 1 (increase or decrease), because if we consider any pair $p_{i} p_{j}$ where $i<j$, it remains in the same order in $\theta(p)$ in every case except when $\left\{p_{i}, p_{j}\right\}=\{1,2\}$. This proves that $\theta(p)$ is odd. The same rule defines a function $\theta^{\prime}: \operatorname{Perm}_{o}(n) \rightarrow \operatorname{Perm}_{e}(n)$. It's clear that θ^{\prime} is the inverse function of θ. Therefore, θ is a bijection, hence $\operatorname{Perm}_{e}(n)|=| \operatorname{Perm}_{o}(n)$.

Second proof. The setup is the same, but I define $\theta(p)=p_{2} p_{1} p_{3} \cdots p_{n}$, where $p=p_{1} p_{2} p_{3} \cdots p_{n}$, i.e., interchange the first two elements of p.
(6) [Points: 10] Let g be the function (as described in the book) that converts a permutation of $[n]$ with k cycles into a permutation of $[n]$ with k left-to-right maxima. Find $g(p)$ where $p=(412)(356)$.

Solution. First we have to express p in canonical cycle form: $p=(412)(635)$. Then we erase the parentheses, getting $g(p)=412635$.
(7) [Points: 12] Find the value of $s(n, 2)$ for $n \geq 1$, where $s(n, k)$ denotes the Stirling number of the first kind.

Solution. First method. We know $s(n, 2)=(-1)^{n-2} c(n, 2)=(-1)^{n} c(n, 2)$ where $c(n, 2)$ is the number of permutations of $[n]$ with exactly two cycles. We need a formula for $c(n, 2)$.

To get two cycles, first we choose a nonempty subset $S \subset[n]$ and its complement, $T=[n] \backslash S$. Then we turn S and T into cycles. Since the number of ways to do that depends on $|S|$ and $|T|$, we organize this computation by $k=|S|$. We choose $0<k<n$. Then we choose S of size k; there are $\binom{n}{k}$ ways to do that. Then we convert S into a cycle; there are $(k-1)$! ways to do so; and we convert T into a cycle; there are $(n-k-1)$! ways to do that. Finally, we sum over k, getting $\sum_{k=1}^{n-1}\binom{n}{k}(k-1)!(n-k-1)!$.

However, we have to divide by 2 , because we counted the same pair of sets, $\{S, T\}$, twice, once for S and once for T. So,

$$
c(n, k)=\frac{1}{2} \sum_{k=1}^{n-1}\binom{n}{k}(k-1)!(n-k-1)!.
$$

The final answer, after simplification, is

$$
s(n, 2)=(-1)^{n} \frac{n!}{2} \sum_{k=1}^{n-1} \frac{1}{(k-1)(n-k-1)} .
$$

Solution. Second method. Start the same way. To avoid duplication, we choose S to contain 1. Then, for each k in $0<k<n$, there are $\binom{n-1}{k-1}$ choices for S. Counting
the number of ways to make S and T into cycles, we get

$$
c(n, k)=\sum_{k=1}^{n-1}\binom{n-1}{k-1}(k-1)!(n-k-1)!=(n-1)!\sum_{k=1}^{n-1} \frac{1}{n-k-1} .
$$

If we replace $j=n-k$ in the last summation, we get

$$
s(n, 2)=(-1)^{n}(n-1)!\sum_{j=1}^{n-1} \frac{1}{j}=(-1)^{n}(n-1)!\left[\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n-1}\right] .
$$

The methods seem to give different answers. I infer that there's an equation that shows they are not different. I know what it is! Do you?

Other possible answers. For instance,

$$
s(n, 2)= \begin{cases}(-1)^{n} n!\sum_{k=1}^{(n-1) / 2} \frac{1}{(k-1)(n-k-1)} & \text { if } n \text { is odd } \\ (-1)^{n} n!\left[\sum_{k=1}^{[n-1) / 2} \frac{1}{(k-1)(n-k-1)}+\frac{1}{2\left(\frac{n}{2}-1\right)^{2}}\right] & \text { if } n \text { is even. }\end{cases}
$$

(Some people found answers like this, but with binomial coefficients instead of all my simplifications.)
(8) [Points: 12] Find the number of permutations p of $[10]$ such that $p(i) \neq i$ for all even numbers $i \in[10]$.

Solution. This is a task for PIE. We have the universe $U=\operatorname{Perm}(10)$. We want to avoid the properties $p(i)=i$, for every even $i \in[10]$. Thus, let $A_{i}=\left\{p \in U: p_{2 i}=2 i\right\}$ for $i=1,2,3,4,5$. We want the value of

$$
\begin{aligned}
& \left|\bar{A}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3} \cap \bar{A}_{4} \cap \bar{A}_{5}\right| \\
& =|U|-\left|A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \cup A_{5}\right| \\
& =|U|-\sum_{i \leq 5}\left|A_{i}\right|+\sum_{i_{1}<i_{2} \leq 5}\left|A_{i_{1}} \cap A_{i_{2}}\right|-\sum_{i_{1}<i_{2}<i_{3} \leq 5}\left|A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}\right| \\
& \quad+\sum_{i_{1}<i_{2}<i_{3}<i_{4} \leq 5}\left|A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}} \cap A_{i_{4}}\right|-\left|A_{1} \cap A_{2} \cap A_{3} \cap A_{4} \cap A_{5}\right| .
\end{aligned}
$$

Now we compute $|U|=10$!, $\left|A_{i}\right|=9$! because one position is fixed, $\left|A_{i_{1}} \cap A_{i_{2}}\right|=8$! because two positions are fixed, etc. That is, the intersection of k subsets A_{i} has size $(10-k)$!. Also, there are $\binom{5}{k}$ such intersections. Thus,

$$
\begin{aligned}
& \left|\bar{A}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3} \cap \bar{A}_{4} \cap \bar{A}_{5}\right| \\
& =10!-\binom{10}{1} 9!+\binom{10}{2} 8!-\binom{10}{3} 7!+\binom{10}{4} 6!-\binom{10}{5} 5!.
\end{aligned}
$$

(9) [Points: 15] How many compositions of n [mistakenly printed as $[n]$ on the test] into four parts have no part equal to 3 ? (Assume $n \geq 12$.)

Solution. Another PIE problem. Let U be the set of all compositions of n into four parts. Thus, $|U|=\binom{n-1}{3}$. A composition looks like this: $n_{1}+n_{2}+n_{3}+n_{4}=n$,
where all $n_{i}>0$. We wish to avoid the four properties $n_{1}=3, n_{2}=3, n_{3}=3$, and $n_{4}=3$. Thus, let A_{i} be the set of compositions in which $n_{i}=3$; then the desired number is

$$
\begin{aligned}
& \left|\bar{A}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3} \cap \bar{A}_{4}\right| \\
& =|U|-\left|A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right| \\
& =|U|-\sum_{i \leq 4}\left|A_{i}\right|+\sum_{i<j \leq 4}\left|A_{i} \cap A_{j}\right|-\sum_{i<j<k \leq 4}\left|A_{i} \cap A_{j} \cap A_{k}\right| \\
& \quad+\left|A_{1} \cap A_{2} \cap A_{3} \cap A_{4}\right| .
\end{aligned}
$$

To compute $\left|A_{1}\right|$, note that if $n_{1}=3$ we are simply composing $n-3$ into three parts, $n_{2}+n_{3}+n_{4}=n-3$. The number of ways to do that is $\binom{n-4}{2}$. Thus, all $\left|A_{i}\right|=\binom{n-4}{2}$. There are $4 A_{i}$'s.

To compute $\left|A_{1} \cap A_{2}\right|$ (or any $\left|A_{i} \cap A_{j}\right|$), if $n_{1}=n_{2}=3$, we are simply composing $n-6$ into two parts; the number of ways to do so is $\binom{n-7}{1}$. For the same reason, any $\left|A_{i} \cap A_{j}\right|=\binom{n-7}{1}$. There are $\binom{4}{2}=6$ such pairs.

To compute $\left|A_{1} \cap A_{2} \cap A_{3}\right|$, note that we are simply composing $n-9$ into one part: there is one way of doing this, since $n-9>0$. Thus, any $\left|A_{i} \cap A_{j} \cap A_{k}\right|=\binom{n-10}{0}$. There are $\binom{4}{3}=4$ such triples.

Finally, $\left|A_{1} \cap A_{2} \cap A_{3} \cap A_{4}\right|$ is the number of ways to compose $n-12$ into no parts, none equal to three. Here we have to be more careful. As there are no parts, none of them can possibly equal 3 , so we are counting compositions of $n-12$ into no parts. Since $n-12 \geq 0$, there are two cases. If $n=12$, there is one way to compose $n-12$ into no parts, i.e., take no parts, whose sum is 0 . If $n>12$, there are no ways to compose $n-12$ into no parts, since $n-12>0$.

The answer is therefore:

$$
\begin{aligned}
& \left|\bar{A}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3} \cap \bar{A}_{4}\right| \\
& =\binom{n-1}{3}-4\binom{n-4}{2}+6\binom{n-7}{1}-4\binom{n-10}{0}+ \begin{cases}0 & \text { if } n=12, \\
1 & \text { if } n>12\end{cases} \\
& = \begin{cases}\binom{11}{3}-4\binom{8}{2}+6\binom{5}{1}-4+1=80 & \text { if } n=12, \\
\binom{n-1}{3}-4\binom{n-4}{2}+6\binom{n-7}{1}-4 & \text { if } n>12 .\end{cases}
\end{aligned}
$$

(Either of these is a correct answer.)

