
The Möbius Function, Möbius Inversion,
and their Linear Algebra

By the way, Möbius was an astronomer, although now, I believe, he’s
most famous as a mathematician. Funny thing, that.

In these notes we have a finite partially ordered set P and several exam-
ples, notably P(Xn), the power set of Xn = {1, 2, . . . , n}.

1. Matrices for Möbius

The book introduces the set F of all functions ϕ : P × P → R such
that ϕ(x, y) = 0 if x 6≤ y. I want a name for such functions; let’s call
them incidence functions on P . That is, F is the set of incidence functions.
Since F has addition and scalar multiplication of functions, and it also
has multiplication, called “convolution”, it is algebraic; thus we call it the
incidence algebra of P . The book defines convolution and the functions δ,
ζ, and µ.

Any incidence function ϕ can be thought of in terms of a matrix, which
I call Mϕ. The matrix is really just the table of values of ϕ. The rows and
columns of the matrix are labelled by the elements of P , both using the
same (total) ordering of elements. If that ordering is a linear extension of
<, then Mϕ is upper triangular. This is a very good feature for computa-
tions. Therefore, we always use a linear extension for labelling the rows and
columns of the matrices.

The two properties we need of this correspondence between an incidence
function and its matrix are stated in the next theorem:

Theorem 1 (Algebra of partially ordered set matrices). Let ϕ1, ϕ2 ∈ F .

(1) Convolution corresponds to matrix multiplication: Mϕ1∗ϕ2 = Mϕ1Mϕ2 .
(2) Mδ = I, the identity matrix.

Corollary 1.1. If ϕ1 ∗ ϕ2 = δ, then Mϕ1Mϕ2 = Mδ = I. Therefore Mϕ1 =
M−1ϕ2

and Mϕ2 = M−1ϕ1
.

In particular, Mµ = M−1ζ .

Proof. Recall that we defined µ to be the incidence function such that µ∗ζ =
δ. In matrix form, therefore (by Theorem ??), Mµ∗Mζ = Mδ = I. Therefore

Mµ = M−1ζ . (We have to know M−1ζ exists. It exists because Mζ is upper

triangular with 1’s on the diagonal, therefore Mζ is invertible. This proof
that µ exists uses pure linear algebra from Math 304, without going through
the computation in the book on page 186.) �

2. The Möbius function

Example 1 (The power set of 3 elements: P(X3)). Let’s compute µ(∅, S)
for S ⊆ X3. We work up from µ(∅,∅), i.e., the bottom. For readability
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it’s convenient to simplify the notation for subsets by writing, for example,
{1, 2} as 12 (I will do that usually, but not always).

µ(∅,∅) = 1,

µ(∅, 3) = −
∑

∅≤x<3

µ(∅, x) = −µ(∅,∅) = −1,

and similarly

µ(∅, 1) = µ(∅, 2) = −1.

Also,

µ(∅, 23) = −
∑

∅≤x<23

µ(∅, x) = −[µ(∅,∅) + µ(∅, 2) + µ(∅, 3)] = 1,

and similarly

µ(∅, 12) = µ(∅, 13) = 1.

Finally,

µ(∅, 123) = −[1− 1− 1− 1 + 1 + 1 + 1] = −1.

To compute µ(1, S) for S ⊆ X3, do the same thing as above but start at
{1}. Therefore you take µ(1, 1) = 1, and find µ(1, 12) = −1, µ(1, 13) = −1,
and µ(1, 123) = −(1 − 1 − 1) = 1. The other subsets, those with S + {1},
all have µ({1}, S) = 0.

The final result of calculating all values of µ(R,S) can be summarized in
a general formula:

µ(R,S) =

{
(−1)|S|−|R| if R ⊆ S,
0 if R * S,

and displayed in a table (which is the same as a matrix):

Mµ =



1 −1 −1 −1 1 1 1 −1
0 1 0 0 −1 −1 0 1
0 0 1 0 −1 0 −1 1
0 0 0 1 0 −1 −1 1
0 0 0 0 1 0 0 −1
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1


.

The rows and columns of the matrix are labelled by the elements of P(X3),
both using the same total order of elements. I used the order ∅, 1, 2, 3, 12, 13, 23, 123.
My total order is a linear extension of < (which is ⊆ in this example). You
may have noticed that the matrix is upper triangular (not a coincidence).
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There is a general theorem for the power set of an n-element set such as
Xn. It is not hard to prove it by induction.

Theorem 2. In P (Xn), the Möbius function is

µ(R,S) =

{
0 if R * S,

(−1)|S|−|R| if R ⊆ S.

Consider a general partially ordered set P . If it has a unique maximal
element we call that element 1̂. If it has a unique minimal element we call
that element 0̂. That means 0̂ ≤ x ≤ 1̂ for all x ∈ P .

Example 2 (A partially ordered set with 0̂ and 1̂, and 3 levels). Let’s write
m for the number of elements in the middle level. A useful fact is that for
this partially ordered set,

µ(0̂, 1̂) = −[1 +m(−1)] = m− 1.

The proof for small m is a homework problem.
I use this in class to deduce Steiner’s 1826 counting formulas for regions

and bounded regions of an arrangement of lines in the plane.

3. Möbius Inversion

Theorem 3 (Möbius Inversion, same as Theorem 6.6.1). Suppose P is a
poset. Suppose F : P → R is any function. Define

G(x) =
∑
y≤x

F (y).

Then

F (x) =
∑
y≤x

G(y)µ(y, x).

Why do we want this? Because very often we want to know F , but we
can calculate G, not F ; so we use Möbius inversion to get F .

Example 3. We take P = P(Xn). Given F : P(Xn)→ R, define

G(R) =
∑
S⊆R

F (S).

Conclusion (from Theorems ?? and ??):

F (R) =
∑
S⊆R

G(S)µ(S,R) =
∑
S⊆R

G(S)(−1)|R|−|S|.

Corollary 3.1. Take R = ∅. Then F (∅) =
∑

S⊆Xn
(−1)|S|G(S).

This corollary is what turns into the Principle of Inclusion and Exclusion.
But that is off topic (it’s in §6.6).
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We can turn Möbius inversion into linear algebra and use linear algebra
to prove Theorem ??. Let P = {x1, x2, . . . , xn}. A function F : P → R can
also be written as a vector:

F =
(
F (x1), F (x2), . . . , F (xn)

)
∈ Rn.

Now we can prove Möbius inversion. We use the vector form of F in the
proof.

Theorem 4 (Möbius Inversion again). Suppose we have any function F :
P → R. If we define G(x) =

∑
y≤x F (x), then F (x) =

∑
y≤x µ(y, x)G(y).

Proof. We rewrite the definition of G with the restriction on y removed
and replaced by a zeta function: G(x) =

∑
y∈P F (y)ζ(y, x). (Check it, to

make sure you understand how this works!) We rewrite the sum as a matrix
product with Mζ on the right:

G = FMζ ,

∴ F = GM−1ζ ,

∴ F = GMµ,

∴ F (x) =
∑
y∈P

G(y)µ(y, x),

∴ F (x) =
∑
y≤x

G(y)µ(y, x)

(because µ is an incidence function so the terms where y 6≤ x are zero). �
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