
Math 386 Test 1 October 24, 2022 SOLUTIONS

(1) (10 points) Give a combinatorial proof of Pascal’s identity
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
, where

n > k > 0.
Solution. Let S be a set of n elements and let a be one element of S. The left
side,

(
n
k

)
, counts all k-element subsets T of S. Some of those subsets T contain a

and some do not. The ones that do not contain a are precisely the subsets of S − a,
which has n − 1 elements, so there are

(
n−1
k

)
of that type. The subsets T that do

contain a consist of a and also k− 1 elements of S− a, so the number of them equals
the number of k − 1-element subsets of S − a, which is

(
n−1
k−1

)
. Since there are

(
n−1
k

)
k-element subsets that do not contain a and there are

(
n−1
k−1

)
that do contain a, the

total number of k-element subsets of S equals
(
n−1
k

)
+
(
n−1
k−1

)
, the right side. Since the

left and right sides both count all k-element subsets of S, they are equal.

(2) (5 points) Express the sum
(
n
n

)
+
(
n+1
n

)
+ · · ·+

(
n+5
n

)
as a single binomial coefficient.

Use any method. Proof is not required.
Solution.

(
n+6
n+1

)
. Here is a proof:(

n

n

)
+

(
n + 1

n

)
+

(
n + 2

n

)
+

(
n + 3

n

)
+

(
n + 4

n

)
+

(
n + 5

n

)
=

(
n

0

)
+

(
n + 1

1

)
+

(
n + 2

2

)
+

(
n + 3

3

)
+

(
n + 4

4

)
+

(
n + 5

5

)
=

(
n + 6

5

)
by one of the important formulas for binomial coefficients, (5.18) with r = n and
k = 5. A simpler way (opinion!) is to use Pascal’s identity several times after two
small adjustments, as here:(

n

n

)
+

(
n + 1

n

)
+

(
n + 2

n

)
+

(
n + 3

n

)
+

(
n + 4

n

)
+

(
n + 5

n

)
=

(
n

0

)
+

(
n + 1

1

)
+

(
n + 2

2

)
+

(
n + 3

3

)
+

(
n + 4

4

)
+

(
n + 5

5

)
=

(
n + 1

0

)
+

(
n + 1

1

)
+

(
n + 2

2

)
+

(
n + 3

3

)
+

(
n + 4

4

)
+

(
n + 5

5

)
=

(
n + 2

1

)
+

(
n + 2

2

)
+

(
n + 3

3

)
+

(
n + 4

4

)
+

(
n + 5

5

)
=

(
n + 3

2

)
+

(
n + 3

3

)
+

(
n + 4

4

)
+

(
n + 5

5

)
=

(
n + 4

3

)
+

(
n + 4

4

)
+

(
n + 5

5

)
=

(
n + 5

4

)
+

(
n + 5

5

)
=

(
n + 6

5

)
.
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(3) (5+5+bonus points) There are 99 bottles of beer on the wall,1 all in a row.
(a) How many ways are there to pick 12 of the bottles?

Solution.
(
99
12

)
. (No explanation is needed for this.)

(b) How many ways are there to pick 12 bottles, if you are not allowed to pick any
two adjacent bottles? (That is, any two you pick must be separated by at least
one bottle.)
Solution. There are several ways to solve this. I will use the most flexible one.

Suppose our 12 chosen bottles have x0 bottles (not chosen) on their left, there
are xi bottles between the ith bottle and the next one (for i = 1, 2, . . . , 11, and
there are x12 bottles to the right of the last chosen bottle. Hence, x0 +x1 + · · ·+
x11 + x12 = 99− 12 = 87.

The conditions of this problem require x0, x12 ≥ 0 and x1, . . . , x11 ≥ 1. So,
we replace some of the variables: let yi = xi − 1 for i = 1, 2, . . . , 11. Then the
restriction is that yi ≥ 0. Now we have x0 + (y1 + 1) + · · ·+ (y11 + 1) +x12 = 87,
which simplifies to x0 + y1 + · · · + y11 + x12 = 76, with all variables ≥ 0. The
number of solutions is

(
76+13−1
13−1

)
=
(
88
12

)
. That is the number of ways to pick the

12 bottles.
(c) How many ways are there to pick 12 bottles, if any two you pick must be sep-

arated by at least k bottles, where k ≥ 1 is any integer? Carefully consider
different possible answers depending on the value of k, which may be any posi-
tive integer, small, medium, or large.
Solution. The solution method is the same as in part (b); only the numbers are
different. Here each xi ≥ k for i = 1, 2, . . . , 11 so I replace xi by yi = xi − k for
i = 1, 2, . . . , 11. The equation becomes x0 + (y1 + k) + · · ·+ (y11 + k) +x12 = 87,
simplifying to x0 + y1 + · · ·+ y11 + x12 = 87− 11k, all variables ≥ 0.

Now it gets a bit complicated. If the constant term 87− 11k ≥ 0, our general
method gives the answer: there are

(
(87−11k)+13−1

13−1

)
=
(
99−11k

12

)
ways to pick the

bottles. However, if the constant term is negative, then it’s impossible to sat-
isfy the requirements; since all variables are ≥ 0, their sum can’t be negative.
Therefore, the answer is 0. The number of ways to pick the bottles is therefore{(

99−11k
12

)
if k ≤ 87/11, i.e., k ≤ 7,

0 if k ≥ 8.

Notice that the first formula gives the wrong answer if k ≥ 8, because the upper
number in the binomial coefficient is negative; the value of the coefficient will
not be 0. Remember our general definition of a binomial coefficient!

I gave 5 bonus points for solving the question without noticing that there are
two different cases, 8 points for a complete solution.

(4) (10 points) Let fn be the number of ways to perfectly cover a 2 × n board by
dominoes. Prove that fn+1 = fn + fn−1 for n ≥ 2.
Solution. It helps to draw a picture of the board. Make it 2 squares high and n+ 1
wide. Name the two left-most squares: the upper left square is Xenia (X) and the
lower left square is Yannakis (Y).

1Taken from a classic day camp song.
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We have to cover X with a domino. The domino can be horizontal or vertical. If
the domino on X is vertical, it also covers Y and the remaining board is 2×n, which
can be covered in fn ways. If the domino on X is horizontal, it extends to the right
and the only way to cover Y is by another horizontal domino, also extending to the
right. These two dominos cover two columns, leaving an empty 2 × (n − 1) board,
which can be covered in fn−1 ways. Every cover of the original board is counted in
exactly one of these two cases, so fn+1, the total number of ways to cover the original
board, equals fn + fn−1.

(5) (3+3+5 points) Consider the multiset M = {14 · a, 15 · b, 16 · c}.
Solution. You have to know the difference between combinations and permutations.
(a) How many 45-combinations are there of M?

Solution. 1. Because |M | = 45, it is its own only 45-combination. Partial
credit for a complicated answer derived by PIE, which should = 1 but I didn’t
try to simplify it.

(b) How many 44-combinations are there of M?
Solution. 3. Because 44 = |M | − 1, we take one element out of M to get a
44-combination. Since there are only 3 distinguishable elements of M , there are
3 44-combinations.
Solution. (Second way.) We remove a 1-combination from M . The number of
1-combinations is 3.

(c) How many permutations are there of M?
Solution. 45!/14!15!16!.

(6) (14 points) How many 28-combinations are there of the multiset M in problem (5)?
Solution. This problem requires the Principle of Inclusion and Exclusion.

Part of the solution is the set-up, including choosing a universe. In this kind
of problem, first we define M∗ = {∞ · a,∞ · b,∞ · c}. Then we can define the
universe, U = {all 28-combinations of M∗}. Then we define the properties of a 28-
combination C of M∗. (In this problem we are avoiding all properties, which are that
a 28-combination has too many of some element of M .) So:

P1 = the property that C has more than 14 a’s.
P2 = the property that C has more than 15 b’s.
P3 = the property that C has more than 16 c’s.

This gives the sets for exclusion:
A1 = the set of 28-combinations of M∗ that have ≥ 15 a’s.
A2 = the set of 28-combinations of M∗ that have ≥ 16 b’s.
A3 = the set of 28-combinations of M∗ that have ≥ 17 c’s.

(If you omit the properties but give the sets, it’s okay.)
Now we do the calculations. We know |U | =

(
28+3−1
3−1

)
. As for A1, a 28-

combination in A1 has 15 a’s and 28 − 15 = 13 additional arbitrary elements of
M∗, so |A1| =

(
13+3−1
3−1

)
. Similarly, |A2| =

(
12+3−1
3−1

)
and |A3| =

(
11+3−1
3−1

)
.

Next, an element of A1 ∩ A2 has to be a 28-combination with ≥ 15 a’s and
≥ 16 b’s, which is impossible; therefore A1 ∩ A2 is empty, i.e., |A1 ∩ A2| = 0. For
similar reasons, |A1 ∩ A3| = 0 and |A2 ∩ A3| = 0, and therefore |A1 ∩ A2 ∩ A3| = 0.

Finally, we put these numbers into the PIE formula. We are avoiding the prop-
erties so the formula to use is
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Ā1 ∩ Ā2 ∩ Ā3 = |U | − (|A1|+ |A2|+ |A3|)
+ (|A1 ∩ A2|+ |A1 ∩ A3|+ |A2 ∩ A3|)− |A1 ∩ A2 ∩ A3|

=

(
28 + 3− 1

3− 1

)
−
[(

13 + 3− 1

3− 1

)
+

(
12 + 3− 1

3− 1

)
+

(
11 + 3− 1

3− 1

)]
+ (0 + 0 + 0)− 0

=

(
30

2

)
−
[(

15

2

)
+

(
14

2

)
+

(
13

2

)]
.

Note of explanation: The universe can’t be M∗ (and it can’t be the set of 28-
combinations of M). The universe has to be a set of 28-combinations (of something)
because in PIE we count some of the elements of the universe while excluding others.
The universe also has to be easy to count. The 28-combinations of M∗ are easy
to count because there is no limit on how many of each element we can have in a
28-combination. The 28-combinations of M are hard to count.

(7) (10 points) How many solutions in integers does the following equation have, with
the stated restrictions on the variables?

x1 + x2 + x3 + x4 + x5 = 77,

x1 ≥ 0, x2 ≥ 15, x3 ≥ 15, x4 ≥ 15, x5 ≥ −10.

Solution. Normalize the variables to be ≥ 0. So, I will let y1 = x1, y2 = x2−15 ≥ 0,
y3 = x3 − 15 ≥ 0, y4 = x4 − 15 ≥ 0, y5 = x5 − (−10) ≥ 0. Carefully substituting for
the x’s in the equation, I find that

y1 + (y2 + 15) + (y3 + 15) + (y4 + 15) + (y5 − 10) = 77,

which simplifies to y1 +y2 +y3 +y4 +y5 = 42 with all yi ≥ 0. The number of solutions
is
(
42+5−1
5−1

)
.

Notice that there is no upper bound on any of the variables. That is why we
don’t need the PIE.

(8) (10 points) Prove that, if you have 6 people, and every pair of them either loves or
hates each other, then there is a triple who all love each other or all hate each other.
(Do not test this at home.)
Solution. Look at one of the 6 people, say Alfred. Alfred has 5 relationships of
two “colors”, love and hate. By the Pigeonhole Principle, Alfred loves 3 (at least) or
hates 3 (at least). Suppose Alfred loves 3. If any two of those three love each other,
then with Alfred they make a loving triple. If no two of those three love each other,
they make a hating triple by themselves. Thus, in this case the claimed triple exists.
If on the other hand Alfred hates 3, the same reasoning shows there is a hating triple
including Alfred or a loving triple without him. In every case, therefore, the claimed
triple exists.

Trying to solve the problem by somehow classifying pairs doesn’t work. I think
that shows how useful the PHP is.
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(9) (4+3+3 points) For the partially ordered set P of all subsets of {a, b, c}:
(a) Draw the Hasse diagram.

Solution.

∅
@

@
@
@

�
�
�
�

{a} {b} {c}

�
�

�
�

�
�
�
�

@
@
@
@

@
@
@
@

{a, b} {a, c} {b, c}

�
�

�
�

@
@
@
@

{a, b, c}

(b) Find a maximal chain in P.
Solution. Many, such as ∅ ⊂ {a} ⊂ {a, c} ⊂ {a, b, c}, or you can write it as
{∅, {a}, {a, c}, {a, b, c}} (or other ways).

(c) Find an antichain of at least 3 elements of P.
Solution. Two exist: {{a}, {b}, {c}} and {{a, b}, {a, c}, {b, c}}.

(10) (10 points) Find the number of permutations i1i2i3i4i5 of the numbers 1, 2, 3, 4, 5
such that

i1 6= 1, 2, i2 6= 1, 2, i3 6= 4, i4 6= 4, 5.

Solution. Draw the 5× 5 board with the forbidden squares x’d out. Then calculate
r1, r2, r3, r4, r5 by using the x’d squares. The values are r1 = 7, r2 = 15, r3 = 10,
r4 = 2, r5 = 0. The number of permutations is therefore 5!− 7 · 4! + 15 · 3!− 10 · 2! +
2 · 1!− 0 · 0! = 24.

To compute r2, for instance, a good method is to notice that the forbidden board
has two separate parts: a 2×2 square in the upper left and three squares in an L shape
in the lower right. To get r2 we count the number of placements of 2 nonattacking
rooks in the upper left portion (this is 2), the number in the lower right portion (this
is 1), and the number of ways to put one rook in each portion (this is 4× 3), giving
the total of 2 + 1 + 12 = 15.
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