
Math 386 Test 2 November 30, 2022 SOLUTIONS

(1) (24=10+4+10 points) Consider a sequence h0, h1, h2, . . . given by the recurrence
relation hn = 2hn−1 + 8hn−2 (for n ≥ 2).
(a) Use the method of characteristic polynomial (also called auxiliary polynomial)

to find the general solution (the one with constants c1 and c2).

Solution. The polynomial is x2 = 2x + 8, which has the solutions x = 4,−2.
Thus, the general solution is hn = c14

n + c2(−2)n.
(b) Use your general solution to find the specific solution that satisfies the initial

conditions h0 = 1 and h1 = 3.

Solution. We set h0 = 1 = c14
0+c2(−2)0 = c1+c2 and h1 = 3 = c14

1+c2(−2)1,
i.e.,

c1 + c2 = 1 and 4c1 − 2c2 = 3.

The values are c1 = 5
6

and c2 = 1
6
, so the specific solution we want is hn =

5
6
4n + 1

6
(−2)n.

(c) Then use your general solution in (a) to find the sequence that satisfies hn =
2hn−1 + 8hn−2 + 9n (for n ≥ 2) and the initial conditions h0 = 1 and h1 = 3.

Solution. First step: Find a specific solution of this inhomogeneous recurrence.
We try hn = an+ b. This gives

an+ b = 2(a[n− 1] + b) + 8(a[n− 2] + b) + 9n,

which simplifies to

an+ b = (2a+ 8a+ 9)n+ (−18a+ 10b).

Comparing coefficients of the two polynomials gives a = 10a+9 and b = −18a+
10b, so a = −1 and b = −2. Thus, our special solution is −n − 2. Now
we combine this with the general homogeneous solution from part (a) to get
hn = c14

n + c2(−2)n − n− 2.
Second step: Fit this to the initial values: h0 = 1 = c1 + c2 − 2 and h1 = 3 =
−4c1 + 2c2 − 3. The values are c1 = 2 and c2 = 1, so the specific solution we
want is hn = 2(4)n + (−2)n − n− 2.

(2) (6 points) What is the sequence hn, n = 0, 1, 2, . . ., whose generating function is
1/(1− 4x)11?

Solution. By Newton’s Binomial Theorem,

1/(1− 4x)11 =
∞∑
n=0

(
n+ 11− 1

n

)
(4x)n =

∞∑
n=0

(
n+ 10

10

)
4nxn.

Thus, the sequence is hn =
(
n+10
10

)
4n.
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(3) (20 points) Use the method of generating functions to solve the recurrence hn =
5hn−1 + 3n (for n ≥ 1) with initial condition h0 = 1.

Solution. First, set up the generating function (which I call H(x) but you can
call it whatever you please):

(0.1) H(x) =
∞∑
n=0

hnx
n = h0 + h1x+ h2x

2 + h3x
3 + · · · .

(The dots are required because this is not a finite sum.)
Next, get the equation involving the generating function by summing xn times the

recurrence (for n ≥ 1):

(0.2)
∞∑
n=1

hnx
n =

∞∑
n=1

5hn−1x
n + c.

We need to get this in terms of H(x).
– The first sum is h1x+ h2x

2 + h3x
3 + · · · = H(x)− h0.

– The second sum is 5x
∑∞

n=1 hn−1x
n−1 (we matched the subscript to the exponent)

=
∑∞

m=0 hmx
m by the substitution m = n − 1. This gets the sum into the form∑

hmx
m, as in H(x), and since it begins at m = 0, this sum = H(x).

– The third sum is
∑∞

n=1(3x)n = 3x
∑∞

m=0(3x)m (by the substitution m = n − 1)
= 3x

1−3x by the geometric series or Newton’s Binomial Theorem.
Now we can put H(x) into Equation (0.2):

H(x)− h0 = 5xH(x) +
3x

1− 3x
.

Solve for H(x):

H(x)(1− 5x) = h0 +
3x

1− 3x
= 1 +

3x

1− 3x
=

1

1− 3x

and therefore

H(x) =
1

(1− 5x)(1− 3x)
.

Use partial fractions to get “pure” denominators:

1

(1− 5x)(1− 3x)
=

A

1− 5x
+

B

1− 3x

so 1 = A(1− 3x) +B(1− 5x), whose solution is A = 5
2

and B = −3
2
. Therefore,

H(x) =
5

2

1

1− 5x
− 3

2

1

1− 3x
.

Finally, we get the answer by applying Newton’s Binomial Theorem (actually,
simply the geometric series):

H(x) =
5

2

∞∑
n=0

(5x)n − 3

2

∞∑
n=0

(3x)n =
∞∑
n=0

[5
2

5nxn − 3

2
3nxn

]
=
∞∑
n=0

5n+1 − 3n+1

2
xn.

Comparing to (0.1) we see that the coefficient of xn is hn, so

hn =
5n+1 − 3n+1

2
.
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Note: Optionally, you can check your answer by testing h0 and h1. The formula
gives h0 = 51−31

2
= 1, which is correct. It also gives h1 = 52−32

2
= 8, which agrees

with the recurrence, h1 = 5h0 + 31 = 8. That gives me confidence I did it right.

(4) (15 points) Miss Clavel takes 6 little girls to the little carousel, which has 6 little
horses, each of a different color. The little girls get on the horses and enjoy a ride.
The ride ends and they all get off for ice cream. Then they go back for another ride.
In the second ride, no girl sits diametrically across from the same girl she did on
the first ride. How many ways can the little girls sit in the second ride? (Sorry, no
illustration; I can’t match the original Madeline.)

Solution. The little horses are distinguishable, so we can number them from 1 to
6 around the carousel and let’s number the girls also, according to which horse they
sit on in the first ride. Notice that girls 1 and 4 are opposite, as are girls 2 and 5,
and also girls 3 and 6. The opposite pairs each differ by 3.

In the second ride their seating is a permutation s1s2 · · · s6 of {1, 2, . . . , 6}, where
s1 is the number of the horse chosen by girl 1, etc. Counting directly gets messy so
we apply the Principle of Inclusion and Exclusion (“apple PIE”).

The universe U is the set of all possible seatings, i.e., all permutations of the
girls, thus |U | = 6!. (We do not use circular permutations because the horses are of
different colors.)

The properties are P1: girls 1 and 4 are opposite; P2: girls 2 and 5 are opposite;
P3: girls 3 and 6 are opposite. We want to avoid all three properties. With the usual
definition of Ai = {x ∈ U : x satisfies Pi}, we want to find |Ā1 ∩ Ā2 ∩ Ā3|. The PIE
formula is

|Ā1∩ Ā2∩ Ā3| = |U |− (|A1|+ |A2|+ |A3|)+(|A1∩A2|+ |A1∩A3|+ |A2∩A3|)−|A1∩A2∩A3|.
To find |A1| we notice that girl 1 has 6 choices of horse but then girl 4 must be

opposite (1 choice). Then the remaining girls can sit in any way in the 4 unused
horses (4! ways). Thus, |A1| = 6 · 4!. The computations for A2 and A3 are similar so
|A2| = |A3| = 6 · 4!.

To find |A1 ∩ A2| we let girl 1 choose from 6 horses; then girl 4 must be opposite.
Next, girl 2 chooses from 4 horses and girl 5 must be opposite. Finally, girls 3 and
6 sit in the last two horses (2! choices). Thus, |A1 ∩ A2| = 6 · 4 · 2!. Similarly,
|A1 ∩ A3| = |A2 ∩ A3| = 6 · 4 · 2!.

Finally, if the girls satisfy all three properties, then girl 1 has 6 choices, girl 4 has
one choice, girl 2 has 4 choices, girl 5 has one choice, girl 3 has 2 choices, and girl 6
has one choice. Thus, |A1 ∩ A2 ∩ A3| = 6 · 4 · 2.

Substituting all this into the PIE formula,

|Ā1 ∩ Ā2 ∩ Ā3| = 6!− 3(6 · 4!) + 3(6 · 4 · 2)− 6 · 4 · 2.
This is the answer.

Note: If you calculated the actual number, it should be 384.
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(5) (12 points) The Fibonacci numbers fn, n ≥ 0 satisfy the recurrence

fn+k−1 = fkfn + fk−1fn−1 for all n, k > 0.

Use this recurrence with k = 7 to prove that 8 divides fn if and only if 6 divides n.

Solution. We need the values of f6 and f7, which are in the sequence
n 0 1 2 3 4 5 6 7
fn 0 1 1 2 3 5 8 13

so f6 = 8 and f7 = 13. By the recurrence, fn+6 = 8fn + 13fn−1. Therefore,

8|fn+6 ⇐⇒ 8|(13fn + 8fn−1) ⇐⇒ 8|13fn ⇐⇒ 8|fn
—the last step because gcd(8, 13) = 1. This shows that fn and fn+6 have the same
property regarding divisibility by 8, namely, both are divisible or both are not divis-
ible.

Therefore, all Fibonacci numbers f0, f6, f12, . . . , f6j, . . . have the same divisibility
property. Since f0 = 0 (or f6) is divisible by 8, all of them are divisible by 8. That
is, 8|fn if n is a multiple of 6. This proves half the statement.

Also, all of f1, f7, f13, . . . , f6j+1, . . . have the same divisibility property. As f1 = 1
is not divisible by 8, none of them is divisible by 8. Similarly,
– all f6j+2 have the same divisibility property as f2 = 1 so they are not divisible by

8,
– all f6j+3 have the same divisibility property as f3 = 2 so they are not divisible by

8,
– all f6j+4 have the same divisibility property as f4 = 3 so they are not divisible by

8,
– all f6j+5 have the same divisibility property as f5 = 5 so they are not divisible by

8.
This proves the other half of the statement.

One can write a formal proof of the last part with induction, but it is not quite
simple and this is good enough.

A solution by induction on n is impossible.
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(6) (10 points) Here is the Hasse diagram of a poset P . The table gives the Möbius
function of P . There is an unknown function F (x), x ∈ Q, and we define a function
G(y), y ∈ Q, by the formula

G(y) =
∑
x:x≤y

F (x).

The function G is known (see the table). Use Möbius inversion to find the value of
F (d).

x a b c1 c2 d

G(x) 7 6 5 4 3

µ(x, y) a b c1 c2 d

a 1 −1 0 0 0

b 0 1 −1 −1 1

c1 0 0 1 0 −1

c2 0 0 0 1 −1

d 0 0 0 0 1

Values of µ(x, y): x on the left, y
along the top.

P

a

b

c1 c2

d

�
�
�
�

A
A
A
A

�
�
�
�

A
A
A
A

Solution. The general formula for Möbius inversion is F (y) =
∑

x:x≤y µ(x, y)G(x).

Set y = d; then F (d) =
∑

x:x≤d µ(x, d)G(x) =
∑

x∈P µ(x, d)G(x) since every x ∈ P
is ≤ d. So,

F (d) = µ(a, d)G(a) + µ(b, d)G(b) + µ(c1, d)G(c1) + µ(c2, d)G(c2) + µ(d, d)G(d)

= (0)(7) + (1)(6) + (−1)(5) + (−1)(4) + (1)(3)

= 0.
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(7) (13 points) Here is the Hasse diagram of a poset Q. Compute the Möbius function
value µ(a, d).

Q

a

b1 b3

c1 c2

d

@
@

@
@

�
�
�
�

�
�
�
�
�
�
�
�
�
�

@
@

@
@

@
@

@
@

Solution. We work upwards from a.
µ(a, a) = 1.
µ(a, b1) = −µ(a, a) = −1.
µ(a, b3) = −µ(a, a) = −1.
µ(a, c1) = −[µ(a, a) + µ(a, b3)] = 0.
µ(a, c2) = −[µ(a, a) + µ(a, b3)] = 0.
µ(a, d) = −[µ(a, a) + µ(a, b1) + µ(a, b3) + µ(a, c1) + µ(a, c2)] = 1.

And there is the answer.
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