1. A Solution to Diestel, Exercise 1.8

1.1. The problem.

Find a good lower bound for the order of a connected graph in terms of its diameter and minimum degree.

1.2. My solution.

Let D be the diameter and δ the minimum degree, and let $n_{0}(D, \delta)$ be the exact minimum order of a graph G that meets the requirements of the problem. I'll assume $D \geq 2$ because $D=1$ is a special case that seems irregular; it implies $G=K_{2}$ and $\delta=1$. Thus, $\delta \geq 2$ also.

First, I'll get a lower bound on $n_{0} . G$ must contain a pair of vertices v_{0} and v_{D} of distance $d\left(v_{0}, v_{D}\right)=D$ and a connecting path $P=v_{0} v_{1} \cdots v_{D}$ of length D. Then P has order $D+1$, Let $O:=V(G \backslash P)$ be the set of vertices in G that are not on P.

Each vertex in P has degree $d\left(v_{i}\right) \geq \delta$, so the number of neighbors in O is at least $\delta-1$ for v_{0} and v_{D} and $\delta-2$ for v_{i} with $0<i<D$. That gives a total of at least $2(\delta-1)+(D-1)(\delta-2)$ for the number of edges from vertices in P to vertices in O. But how many times can a vertex in O be counted this way? If $v \in O$, then v can at most have three neighbors in P, namely v_{i-1}, v_{i}, v_{i+1} for some i, because otherwise v will give a shorter path between v_{0} and v_{D}, which is impossible by assumption. Therefore, the number of edges between P and O is at most $3|O|$. Therefore, $2(\delta-1)+(D-1)(\delta-2) \leq 3|O|$, or

$$
|O| \geq \frac{1}{3}((D+1)(\delta-2)+2)
$$

That implies

$$
|G|=D+1+|O| \geq \frac{1}{3}((D+1)(\delta+1)+2)
$$

That tells us that

$$
\begin{equation*}
n_{0}(D, \delta) \geq\left\lceil\frac{(D+1)(\delta+1)+2}{3}\right\rceil \tag{1.1}
\end{equation*}
$$

Second, we need an example of a graph G to see how small n_{0} might be. Let's join a $K^{\delta-1}$ to v_{0}, v_{1}, v_{2}.

If $D=2$ that gives minimum degree δ with $|G|=\delta+2$. (By the way, this graph is $G=K^{\delta-1} \backslash e$.) Thus, $n_{0}(2, \delta) \leq \delta+2$. This is the same as the lower bound in Equation (1.1) so the exact answer in this case is

$$
\begin{equation*}
n_{0}(2, \delta)=\delta+2 \tag{1.2}
\end{equation*}
$$

If $D>2$ we need more neighbors of v_{D}, so join a $K^{\delta-1}$ to v_{D}, v_{D-1}, v_{D-2}. If $3 \leq D \leq 5$ that gives minimum degree δ with $|G|=D+1+2(\delta-1)$.

If $D>5$ we have middle vertices $v_{3}, \ldots, v_{D-3} \in V(P)$ that need $\delta-2$ more neighbors. There are $\left\lceil\frac{1}{3}(D-5)\right\rceil$ groups of 3 of these vertices so we need that many $K^{\delta-2}$ graphs joined to those groups of 3 , which gives us $\left\lceil\frac{1}{3}(D-5)\right\rceil(\delta-2)$ additional vertices in G. That makes a total of

$$
D+1+2(\delta-1)+\left\lceil\frac{D-5}{3}\right\rceil(\delta-2)=\left\lceil\frac{D+1}{3}\right\rceil(\delta+1)+2
$$

vertices in G. (We don't need any more vertices, because all the vertices in the added cliques have at least 3 neighbors in P, giving them degree not less than $(\delta-2)+3>\delta$, at worst.)

Therefore,

$$
\begin{equation*}
n_{0}(D, \delta) \leq\left\lceil\frac{D+1}{3}\right\rceil(\delta+1)+2 \tag{1.3}
\end{equation*}
$$

when $D \geq 6$. This same formula applies to the cases where $D=3,4,5$ (since then $\left\lceil\frac{1}{3}(D+\right.$ $1)\rceil=2)$. Thus, the bounds are

$$
\begin{equation*}
\left\lceil\frac{(D+1)(\delta+1)+2}{3}\right\rceil \leq n_{0}(D, \delta) \leq\left\lceil\frac{D+1}{3}\right\rceil(\delta+1)+2 \tag{1.4}
\end{equation*}
$$

for $D \geq 3$.

1.3. How good?

How close are the upper and lower bounds? Well,

$$
\left\lceil\frac{(D+1)(\delta+1)+2}{3}\right\rceil \geq \frac{(D+1)(\delta+1)+2}{3}
$$

and

$$
\left\lceil\frac{D+1}{3}\right\rceil(\delta+1)+2 \leq \frac{D+3}{3}(\delta+1)+2
$$

so the difference between the lower and upper bounds is

$$
\leq\left(\frac{D+3}{3}(\delta+1)+2\right)-\left(\frac{(D+1)(\delta+1)+2}{3}\right)=\frac{2}{3}(\delta+3) .
$$

That means my upper and lower bounds differ by not more than approximately $2 \delta / 3$, no matter how large the diameter gets. This is not bad.

It's possible that the difference between my lower and upper bounds is not that big; I did not analyze the effect of the ceiling functions carefully.

It's also possible that the bounds can be improved, but this is certainly a good enough answer to the problem.

