
1. A Solution to Diestel, Exercise 1.8

1.1. The problem.
Find a good lower bound for the order of a connected graph in terms of its diameter and

minimum degree.

1.2. My solution.
Let D be the diameter and δ the minimum degree, and let n0(D, δ) be the exact minimum

order of a graph G that meets the requirements of the problem. I’ll assume D ≥ 2 because
D = 1 is a special case that seems irregular; it implies G = K2 and δ = 1. Thus, δ ≥ 2 also.

First, I’ll get a lower bound on n0. G must contain a pair of vertices v0 and vD of distance
d(v0, vD) = D and a connecting path P = v0v1 · · · vD of length D. Then P has order D + 1,
Let O := V (G \ P ) be the set of vertices in G that are not on P .

Each vertex in P has degree d(vi) ≥ δ, so the number of neighbors in O is at least δ−1 for
v0 and vD and δ−2 for vi with 0 < i < D. That gives a total of at least 2(δ−1)+(D−1)(δ−2)
for the number of edges from vertices in P to vertices in O. But how many times can a vertex
in O be counted this way? If v ∈ O, then v can at most have three neighbors in P , namely
vi−1, vi, vi+1 for some i, because otherwise v will give a shorter path between v0 and vD,
which is impossible by assumption. Therefore, the number of edges between P and O is at
most 3|O|. Therefore, 2(δ − 1) + (D − 1)(δ − 2) ≤ 3|O|, or

|O| ≥ 1

3

(
(D + 1)(δ − 2) + 2

)
.

That implies

|G| = D + 1 + |O| ≥ 1

3

(
(D + 1)(δ + 1) + 2

)
.

That tells us that

(1.1) n0(D, δ) ≥
⌈(D + 1)(δ + 1) + 2

3

⌉
.

Second, we need an example of a graph G to see how small n0 might be. Let’s join a Kδ−1

to v0, v1, v2.
If D = 2 that gives minimum degree δ with |G| = δ + 2. (By the way, this graph is

G = Kδ−1 \ e.) Thus, n0(2, δ) ≤ δ + 2. This is the same as the lower bound in Equation
(1.1) so the exact answer in this case is

(1.2) n0(2, δ) = δ + 2.

If D > 2 we need more neighbors of vD, so join a Kδ−1 to vD, vD−1, vD−2. If 3 ≤ D ≤ 5
that gives minimum degree δ with |G| = D + 1 + 2(δ − 1).

If D > 5 we have middle vertices v3, . . . , vD−3 ∈ V (P ) that need δ − 2 more neighbors.
There are d1

3
(D− 5)e groups of 3 of these vertices so we need that many Kδ−2 graphs joined

to those groups of 3, which gives us d1
3
(D− 5)e(δ− 2) additional vertices in G. That makes

a total of

D + 1 + 2(δ − 1) +
⌈D − 5

3

⌉
(δ − 2) =

⌈D + 1

3

⌉
(δ + 1) + 2

vertices in G. (We don’t need any more vertices, because all the vertices in the added cliques
have at least 3 neighbors in P , giving them degree not less than (δ − 2) + 3 > δ, at worst.)
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Therefore,

(1.3) n0(D, δ) ≤
⌈D + 1

3

⌉
(δ + 1) + 2

when D ≥ 6. This same formula applies to the cases where D = 3, 4, 5 (since then d1
3
(D +

1)e = 2). Thus, the bounds are

(1.4)
⌈(D + 1)(δ + 1) + 2

3

⌉
≤ n0(D, δ) ≤

⌈D + 1

3

⌉
(δ + 1) + 2

for D ≥ 3.

1.3. How good?
How close are the upper and lower bounds? Well,⌈(D + 1)(δ + 1) + 2

3

⌉
≥ (D + 1)(δ + 1) + 2

3
and ⌈D + 1

3

⌉
(δ + 1) + 2 ≤ D + 3

3
(δ + 1) + 2,

so the difference between the lower and upper bounds is

≤
(D + 3

3
(δ + 1) + 2

)
−
((D + 1)(δ + 1) + 2

3

)
=

2

3
(δ + 3).

That means my upper and lower bounds differ by not more than approximately 2δ/3, no
matter how large the diameter gets. This is not bad.

It’s possible that the difference between my lower and upper bounds is not that big; I did
not analyze the effect of the ceiling functions carefully.

It’s also possible that the bounds can be improved, but this is certainly a good enough
answer to the problem.
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