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The goal is to find the most possible equiangular lines in a given dimension d. We’re not
too concerned about the angle itself.

There are two parts to this summary. First, we go from equiangular lines to the Seidel
matrix of a graph. Then we reverse the process, showing how to begin with a graph and find
out what it tells us about equiangular lines.

1. From equiangular lines to graphs

1. Suppose we have a family L = {l1, . . . , ln} of n equiangular lines in Rd, all forming the
same angle ψ with each other. Assume d > 1 and assume the lines span Rd (if not, just
take the subspace they span). The angle ψ ∈ (0, π/2]. We assume ψ < π/2, since the case
ψ = π/2 means we just have d mutually orthogonal lines in Rd, which we know all about
and is not large enough to be interesting to us. Since it’s trivial to get n = d equiangular
lines, we’ll assume n > d (that makes the family L interesting).

2. Choose a unit vector xi in each line li.
3. Form the Gram matrix G of inner products of the unit vectors. That is, let’s say

M :=
(
x1 x2 · · · xn

)
;

then

G = MTM =


x1 · x1 x1 · x2 · · · x1 · xn
x2 · x1 x2 · x2 · · · x2 · xn

...
...

. . .
...

xn · x1 xn · x2 · · · xn · xn

 =


1 ± cosψ · · · ± cosψ

± cosψ 1 · · · ± cosψ
...

...
. . .

...
± cosψ ± cosψ · · · 1

 .

Since the lines span Rd, we have rkG = d, so the nullity is nulG = n− d. Rephrased,

d = n− nulG.

Since we assumed n > d, 0 has positive multiplicity n− d.
4. The matrix 1

cosψ
(G− I) has 0 diagonal and ±1 off the diagonal and is symmetric, so it is

the Seidel matrix of a graph X of order n; i.e.,

1

cosψ

(
G− I

)
= S(X).

5. Now we look at eigenvalues. G is positive semidefinite, since it is a Gram matrix. There-
fore, its least eigenvalue λ1(G) ≥ 0. Since we assumed n > d, we have λ1(G) = 0 with
multiplicity n− d.

6. All the eigenvectors of G are also eigenvectors of I (naturally), so we can simplify the
expression for λ1, namely:

λ1
(
S(X)

)
= λ1

( 1

cosψ

(
G− I

))
=

1

cosψ
λ1
(
G− I

)
=

1

cosψ

(
λ1(G)− 1

)
= − 1

cosψ

with multiplicity n− d.
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7. Since tr(S(X)) = 0 (and S(X) 6= O), λ1(S(X)) < 0. So we get this conclusion about the
angle:

cosψ = − 1

λ1(S(X))
.

2. From graphs to equiangular lines

Now we reverse the process. This is where it gets interesting!

1. We start with any graph X of order n and form its Seidel matrix S(X).
2. We get the least eigenvalue, λ1(S(X)). (It’s a negative number.)
3. Choose

α = − 1

λ1(S(X))
.

(This is a positive number because λ1 < 0.)
4. Form

G := I + αS(X).

Then λ1(G) = 1 + αλ1(S(X)) = 0. Therefore, G is positive semidefinite, which means it
is a Gram matrix (of unit vectors because the diagonal elements equal 1). Let the vectors
be x1, . . . , xn ∈ Rd for some dimension d. Thus (if i 6= j), α(S(X))ij = ±α = xi · xj =
cos(ψij), where ψij is the angle between xi and xj.

Since cosψij = ±α, each ψij = ψ or π− ψ for angle ψ ∈ (0, π/2]. (But ψ = π/2 can be
ruled out because α > 0.)

5. Since we can assume d is the dimension of the span of the vectors xi, it is also the rank
of the matrix

M :=
(
x1 x2 · · · xn

)
.

(Notice how we’re getting the same kinds of objects as when we began with L, but
we’re building them up in the opposite direction, now starting from X.)

6. Since G is the Gram matrix MTM , rkG = rkM = d.
7. Let m1 := the multiplicity of λ1 as an eigenvalue of S(X). Then m1 is the multiplicity

of 0 as an eigenvalue of G. That equals the nullity of G,1which equals n − rkG. So,
m1 = n− d.

8. Let

L := {〈xi〉}ni=1.

Thus, L is a system of n lines in Rn−m1 , all of which make the same angle ψ ∈ (0, π/2)
with each other. We now have a system of n equiangular lines in a space of dimension
n−m1, which is small if the least eigenvalue of our original Seidel matrix S(X) has high
multiplicity.

1The nullity is the dimension of the null space, which is (by the definitions) the dimension of the eigenspace
of 0. This is called the geometric multiplicity of 0. The algebraic multiplicity is its multiplicity as a
zero of the characteristic polynomial. Theorem: They are equal for symmetric matrices. That is why
m1 = dim(eigenspace).
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3. Example

Let’s look at the example of L(K8) in the book, and also L(Kn) in general. (Note that
this n is different from the previous n, which is now

(
n
2

)
since we’re in the complemented line

graph.) L(K8) gives us 21 =
(
7+1
2

)
lines in R7, which is the most possible by the absolute

bound. Why is that? Good luck, that’s why!
The eigenvalues of S(L(Kn)) and their multiplicities are

Eigenvalue Multiplicity Eigenvector(s)

−1
2
(n− 2)(n− 7) 1 1

2n− 7 n− 1 x ⊥ 1

−3
(
n−1
2

)
− 1 x ⊥ 1

(This assumes n ≥ 3 to avoid trivial cases.) The least eigenvalue λ1, with multiplicity m1, is

(λ1,m1) =

{
(−3,

(
n−1
2

)
− 1) if n ≤ 8,

(−1
2
(n− 2)(n− 7), 1) if n ≥ 8.

For n > 8, m1 = 1 and L(Kn) gives us
(
n
2

)
equiangular lines in R(n−1

2 )−1, which is unim-

pressive. For 3 < n < 8, m1 =
(
n−1
2

)
− 1 so we get

(
n
2

)
equiangular lines in Rn; this is

the absolute bound for dimension n − 1 but we’re in dimension n, so we don’t achieve the
absolute bound for our dimension.

However, for n = 8 the first and last eigenvalues are both equal to the same number −3,
whose multiplicity is

(
n−1
2

)
− 1, so the multiplicities add and we get m1 =

(
n−1
2

)
= 21 and

dimension d = n− 1 = 7. Thus, we achieve the absolute bound by sheer good luck.

Eigenvalues.
The eigenvalues of A(Kn) and their multiplicities are

Eigenvalue Multiplicity Eigenvector(s)

n− 1 1 1

2n− 7 n− 1 x ⊥ 1

The eigenvalues and multiplicities of A(L(Kn)) are then

Eigenvalue Multiplicity Eigenvector(s)

2(n− 2) 1 1

n− 4 n− 1 x ⊥ 1

−2
(
n−1
2

)
− 1 x ⊥ 1

From this I get the eigenvalues of the Seidel matrix S(L(Kn)). Since S(L(Kn)) = −S(L(Kn)),
I negate those eigenvalues.
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