Short Summary of Basics of Equiangular Lines

Thomas Zaslavsky

The goal is to find the most possible equiangular lines in a given dimension d. We're not too concerned about the angle itself.

There are two parts to this summary. First, we go from equiangular lines to the Seidel matrix of a graph. Then we reverse the process, showing how to begin with a graph and find out what it tells us about equiangular lines.

1. From equiangular lines to graphs

1. Suppose we have a family $\mathcal{L}=\left\{l_{1}, \ldots, l_{n}\right\}$ of n equiangular lines in \mathbb{R}^{d}, all forming the same angle ψ with each other. Assume $d>1$ and assume the lines span \mathbb{R}^{d} (if not, just take the subspace they span). The angle $\psi \in(0, \pi / 2]$. We assume $\psi<\pi / 2$, since the case $\psi=\pi / 2$ means we just have d mutually orthogonal lines in \mathbb{R}^{d}, which we know all about and is not large enough to be interesting to us. Since it's trivial to get $n=d$ equiangular lines, we'll assume $n>d$ (that makes the family \mathcal{L} interesting).
2. Choose a unit vector x_{i} in each line l_{i}.
3. Form the Gram matrix G of inner products of the unit vectors. That is, let's say

$$
M:=\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right) ;
$$

then

$$
G=M^{T} M=\left(\begin{array}{cccc}
x_{1} \cdot x_{1} & x_{1} \cdot x_{2} & \cdots & x_{1} \cdot x_{n} \\
x_{2} \cdot x_{1} & x_{2} \cdot x_{2} & \cdots & x_{2} \cdot x_{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n} \cdot x_{1} & x_{n} \cdot x_{2} & \cdots & x_{n} \cdot x_{n}
\end{array}\right)=\left(\begin{array}{cccc}
1 & \pm \cos \psi & \cdots & \pm \cos \psi \\
\pm \cos \psi & 1 & \cdots & \pm \cos \psi \\
\vdots & \vdots & \ddots & \vdots \\
\pm \cos \psi & \pm \cos \psi & \cdots & 1
\end{array}\right)
$$

Since the lines span \mathbb{R}^{d}, we have $\operatorname{rk} G=d$, so the nullity is nul $G=n-d$. Rephrased,

$$
d=n-\operatorname{nul} G .
$$

Since we assumed $n>d, 0$ has positive multiplicity $n-d$.
4. The matrix $\frac{1}{\cos \psi}(G-I)$ has 0 diagonal and ± 1 off the diagonal and is symmetric, so it is the Seidel matrix of a graph X of order n; i.e.,

$$
\frac{1}{\cos \psi}(G-I)=S(X)
$$

5. Now we look at eigenvalues. G is positive semidefinite, since it is a Gram matrix. Therefore, its least eigenvalue $\lambda_{1}(G) \geq 0$. Since we assumed $n>d$, we have $\lambda_{1}(G)=0$ with multiplicity $n-d$.
6. All the eigenvectors of G are also eigenvectors of I (naturally), so we can simplify the expression for λ_{1}, namely:

$$
\lambda_{1}(S(X))=\lambda_{1}\left(\frac{1}{\cos \psi}(G-I)\right)=\frac{1}{\cos \psi} \lambda_{1}(G-I)=\frac{1}{\cos \psi}\left(\lambda_{1}(G)-1\right)=-\frac{1}{\cos \psi}
$$

with multiplicity $n-d$.
7. Since $\operatorname{tr}(S(X))=0($ and $S(X) \neq O), \lambda_{1}(S(X))<0$. So we get this conclusion about the angle:

$$
\cos \psi=-\frac{1}{\lambda_{1}(S(X))}
$$

2. From graphs to equiangular lines

Now we reverse the process. This is where it gets interesting!

1. We start with any graph X of order n and form its Seidel matrix $S(X)$.
2. We get the least eigenvalue, $\lambda_{1}(S(X))$. (It's a negative number.)
3. Choose

$$
\alpha=-\frac{1}{\lambda_{1}(S(X))} .
$$

(This is a positive number because $\lambda_{1}<0$.)
4. Form

$$
G:=I+\alpha S(X) .
$$

Then $\lambda_{1}(G)=1+\alpha \lambda_{1}(S(X))=0$. Therefore, G is positive semidefinite, which means it is a Gram matrix (of unit vectors because the diagonal elements equal 1). Let the vectors be $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ for some dimension d. Thus (if $i \neq j$), $\alpha(S(X))_{i j}= \pm \alpha=x_{i} \cdot x_{j}=$ $\cos \left(\psi_{i j}\right)$, where $\psi_{i j}$ is the angle between x_{i} and x_{j}.

Since $\cos \psi_{i j}= \pm \alpha$, each $\psi_{i j}=\psi$ or $\pi-\psi$ for angle $\psi \in(0, \pi / 2$]. (But $\psi=\pi / 2$ can be ruled out because $\alpha>0$.)
5 . Since we can assume d is the dimension of the span of the vectors x_{i}, it is also the rank of the matrix

$$
M:=\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right) .
$$

(Notice how we're getting the same kinds of objects as when we began with \mathcal{L}, but we're building them up in the opposite direction, now starting from X.)
6. Since G is the Gram matrix $M^{T} M, \operatorname{rk} G=\mathrm{rk} M=d$.
7. Let $m_{1}:=$ the multiplicity of λ_{1} as an eigenvalue of $S(X)$. Then m_{1} is the multiplicity of 0 as an eigenvalue of G. That equals the nullity of G, ${ }^{1}$ which equals $n-\mathrm{rk} G$. So, $m_{1}=n-d$.
8. Let

$$
\mathcal{L}:=\left\{\left\langle x_{i}\right\rangle\right\}_{i=1}^{n} .
$$

Thus, \mathcal{L} is a system of n lines in $\mathbb{R}^{n-m_{1}}$, all of which make the same angle $\psi \in(0, \pi / 2)$ with each other. We now have a system of n equiangular lines in a space of dimension $n-m_{1}$, which is small if the least eigenvalue of our original Seidel matrix $S(X)$ has high multiplicity.

[^0]
3. Example

Let's look at the example of $\overline{L\left(K_{8}\right)}$ in the book, and also $\overline{L\left(K_{n}\right)}$ in general. (Note that this n is different from the previous n, which is now $\binom{n}{2}$ since we're in the complemented line graph.) $\overline{L\left(K_{8}\right)}$ gives us $21=\binom{7+1}{2}$ lines in \mathbb{R}^{7}, which is the most possible by the absolute bound. Why is that? Good luck, that's why!

The eigenvalues of $S\left(\overline{L\left(K_{n}\right)}\right)$ and their multiplicities are

$$
\text { Eigenvalue } \quad \text { Multiplicity Eigenvector(s) }
$$

$$
\begin{array}{ccc}
-\frac{1}{2}(n-2)(n-7) & 1 & \mathbf{1} \\
2 n-7 & n-1 & x \perp \mathbf{1} \\
-3 & \binom{n-1}{2}-1 & x \perp \mathbf{1}
\end{array}
$$

(This assumes $n \geq 3$ to avoid trivial cases.) The least eigenvalue λ_{1}, with multiplicity m_{1}, is

$$
\left(\lambda_{1}, m_{1}\right)= \begin{cases}\left(-3,\binom{n-1}{2}-1\right) & \text { if } n \leq 8 \\ \left(-\frac{1}{2}(n-2)(n-7), 1\right) & \text { if } n \geq 8\end{cases}
$$

For $n>8, m_{1}=1$ and $\overline{L\left(K_{n}\right)}$ gives us $\binom{n}{2}$ equiangular lines in $\mathbb{R}^{\binom{n-1}{2}-1}$, which is unimpressive. For $3<n<8, m_{1}=\binom{n-1}{2}-1$ so we get $\binom{n}{2}$ equiangular lines in \mathbb{R}^{n}; this is the absolute bound for dimension $n-1$ but we're in dimension n, so we don't achieve the absolute bound for our dimension.

However, for $n=8$ the first and last eigenvalues are both equal to the same number -3 , whose multiplicity is $\binom{n-1}{2}-1$, so the multiplicities add and we get $m_{1}=\binom{n-1}{2}=21$ and dimension $d=n-1=7$. Thus, we achieve the absolute bound by sheer good luck.

Eigenvalues.

The eigenvalues of $A\left(K_{n}\right)$ and their multiplicities are
Eigenvalue Multiplicity Eigenvector(s)

$n-1$	1	$\mathbf{1}$
$2 n-7$	$n-1$	$x \perp \mathbf{1}$

The eigenvalues and multiplicities of $A\left(L\left(K_{n}\right)\right)$ are then
Eigenvalue Multiplicity Eigenvector(s)

$2(n-2)$	1	$\mathbf{1}$
$n-4$	$n-1$	$x \perp \mathbf{1}$
-2	$\binom{n-1}{2}-1$	$x \perp \mathbf{1}$

From this I get the eigenvalues of the Seidel matrix $S\left(L\left(K_{n}\right)\right)$. Since $S\left(\overline{L\left(K_{n}\right)}\right)=-S\left(\overline{L\left(K_{n}\right)}\right)$, I negate those eigenvalues.

[^0]: ${ }^{1}$ The nullity is the dimension of the null space, which is (by the definitions) the dimension of the eigenspace of 0 . This is called the geometric multiplicity of 0 . The algebraic multiplicity is its multiplicity as a zero of the characteristic polynomial. Theorem: They are equal for symmetric matrices. That is why $m_{1}=\operatorname{dim}$ (eigenspace).

