Equiangular Lines from Complete-Graph Line Graphs
 Notes by T. Zaslavsky

Trying to figure out the example of 20 ($=$ many) equiangular lines in \mathbb{R}^{7} (from $\overline{L\left(K_{8}\right)}$, Godsil \& Royle, pages 250-251) led me to examine how to get equiangular line sets from $L\left(K_{n}\right)$ and its complement $\overline{L\left(K_{n}\right)}$.

This write-up is supposed to be a detailed explanation of all the steps, which were not all given in detail by Godsil \& Royle.

1. EqUiAngular lines from strongly Regular graphs

There are two steps in going from a strongly regular graph $X=\operatorname{SRG}(v, k, a, c)$ to a set of v equiangular lines.

Step 1: Start with a strongly regular graph X.
Step 2: Convert $A(X)$ to the Seidel matrix $S(X)$, i.e., the adjacency matrix of $\left(K_{n}, \sigma\right)$ where $\Sigma^{-}=X$.

Step 3: Use $S(X)$ to get the angle and dimension of the set \mathcal{L} of equiangular lines.
Step 4: Get the unit vectors that generate the lines. (We don't pay too much attention to this step. It's matrix theory.)

1.1. Start with X.

Assume X and \bar{X} are connected. We know the eigenvalues and multiplicities:

$$
\begin{aligned}
& k \text { with multiplicity } 1, \\
& \theta=\frac{1}{2}[a-c+\sqrt{\Delta}] \text { with multiplicity } m_{\theta}=\frac{1}{2}\left[v-1-\frac{2 k+(v-1)(a-c)}{\sqrt{\Delta}}\right], \\
& \tau=\frac{1}{2}[a-c-\sqrt{\Delta}] \text { with multiplicity } m_{\tau}=\frac{1}{2}\left[v-1+\frac{2 k+(v-1)(a-c)}{\sqrt{\Delta}}\right]
\end{aligned}
$$

where $\Delta=(a-c)^{2}+4(k-c)$.

1.2. Convert the matrix.

Write $A:=A(X), \bar{A}:=A(\bar{X}), S:=S(X)$, and $S(\bar{X})=-S$. Since $S=\bar{A}-A$, we get $S=J-I-2 A$.

Consider the eigenvectors:
$\mathbf{1}$ gives $S \mathbf{1}=J \mathbf{1}-\mathbf{1}-2 A \mathbf{1}=(v-1-2 k) \mathbf{1}$.
$x \perp 1$ gives $S x=J x-x-2 A x=(0-1-2 \theta) x$ or $(0-1-2 \tau) x$, depending on which eigenvalue is associated to x.
So, the eigenvalues follow the pattern:

$$
\begin{aligned}
& k \mapsto k^{\prime}=v-1-2 k, \\
& \theta \mapsto \theta^{\prime}=-1-[a-c+\sqrt{\Delta}], \\
& \tau \mapsto \tau^{\prime}=-1-[a-c-\sqrt{\Delta}],
\end{aligned}
$$

with the same multiplicities.
There is a possible trick here. Note that $\tau^{\prime}>\theta^{\prime}($ if $\Delta \neq 0)$ so the smallest eigenvalue is either k^{\prime} or θ^{\prime}, but k^{\prime} might turn out to equal θ^{\prime}, thereby increasing the multiplicity of the least eigenvalue to $m_{\theta}+1$.

1.3. Get the parameters of \mathcal{L}.

That means find the least eigenvalue of S, say $\lambda_{1}(S)$ (necessarily negative), and its multiplicity m_{1}. Then form the matrix $S-\lambda_{1} I$, then normalize the diagonal to I by going to $I-\frac{1}{\lambda_{1}} S$. This is a positive semi-definite matrix so it is a Gram matrix of vectors, i.e., the columns of a matrix M such that $M^{T} M=I-\frac{1}{\lambda_{1}} S$. The dimension is the rank of M, which equals the rank of $M^{T} M$; therefore, the latter is $v-\operatorname{nul}(M)=v-m_{1}$.

The value of λ_{1} is k^{\prime} or θ^{\prime} and the multiplicity is $1, m_{\theta}$, or $m_{\theta}+1$, depending on how things work out.

Conclusion: We get v lines in $\mathbb{R}^{v-m_{1}}$ with angle $\arccos \left(-\frac{1}{\lambda_{1}}\right)$.

1.4. Get the parameters of $\overline{\mathcal{L}}$.

We could have used $-S=S(\bar{X})$ instead to produce a different set $\overline{\mathcal{L}}$ of equiangular lines. (This simple relationship between $S(\bar{X})$ and $S(X)$ is a great help in examples.) The eigenvalues are $-k^{\prime},-\theta^{\prime},-\tau^{\prime}$ with the same multiplicities as before. We know $-\theta^{\prime}>-\tau^{\prime}$ (if $\Delta \neq 0$)) so the least eigenvalue is either $-k^{\prime}$ or $-\tau^{\prime}$, but as before it's possible that $-k^{\prime}=-\tau^{\prime}$, so the least eigenvalue is either $-k^{\prime}$ or $-\tau^{\prime}$ and its multiplicity might turn out to be $1, m_{\tau}$, or $m_{\tau}+1$.

2. Apply to the line graph of the complete graph

Now we look at the example $X=L\left(K_{n}\right)=\operatorname{SRG}\left(\binom{n}{2}, 2(n-2), n-2,4\right)$ and the equiangular line families \mathcal{L}_{n} that can be obtained from $L\left(K_{n}\right)$ and $\overline{\mathcal{L}}_{n}$ from $\overline{L\left(K_{n}\right)}$. This will include both $L\left(K_{8}\right)$ with its line family \mathcal{L}_{8} and also the original example, $\overline{L\left(K_{8}\right)}$, with its line family $\overline{\mathcal{L}}_{8}$.

Here $\Delta=(n-6)^{2}+4([2 n-4]-4)=(n-2)^{2}$, which makes $\sqrt{\Delta}=n-2$, a nice number and definitely nonzero. Let's assume $n \geq 3$, since when $n \leq 2$ the line graph is totally trivial. Therefore, $\theta>\tau$ so $\theta^{\prime}<\tau^{\prime}$.

The eigenvalues of $L\left(K_{n}\right)$ are

$$
\begin{aligned}
& k=2(n-2) \text { with multiplicity } 1, \\
& \theta=\frac{1}{2}[n-6+(n-2)]=n-4 \text { with multiplicity } \\
& \qquad m_{\theta}=\frac{1}{2}\left[\binom{n}{2}-1-\frac{4(n-2)+\left(\binom{n}{2}-1\right)(n-6)}{\sqrt{\Delta}}\right]=n-1 \\
& \tau=\frac{1}{2}[n-6-(n-2)]=-2 \text { with multiplicity } \\
& \quad m_{\tau}=\frac{1}{2}\left[\binom{n}{2}-1+\frac{4(n-2)+\left(\binom{n}{2}-1\right)(n-6)}{\sqrt{\Delta}}\right]=\binom{n-1}{2}-1 .
\end{aligned}
$$

2.1. Get the parameters of \mathcal{L}_{n}.

The eigenvalues of $S=S\left(L\left(K_{n}\right)\right)$ are

$$
\begin{aligned}
& k^{\prime}=\binom{n}{2}-1-4(n-2)=\binom{n}{2}-4 n+7, \\
& \theta^{\prime}=-1-2(n-4)=-2 n+7, \\
& \tau^{\prime}=-1-2(-2)=3,
\end{aligned}
$$

with the same multiplicities, though now some eigenvalues might be equal.

We have to decide what $\lambda_{1}(S)$ is and its multiplicity. Since $\theta^{\prime}<\tau^{\prime}, \lambda_{1}(S)$ is the smaller of k^{\prime} and θ^{\prime}. A calculation shows that

$$
\begin{cases}k^{\prime}<\theta^{\prime} & \text { when } n<5 \\ k^{\prime}=\theta^{\prime} & \text { when } n=5 \\ k^{\prime}>\theta^{\prime} & \text { when } n>5\end{cases}
$$

Therefore,

$$
\lambda_{1}(S)= \begin{cases}k^{\prime}=\binom{n}{2}-4 n+7 & \text { when } n<5, \text { with multiplicity } m_{1}=1 \\ k^{\prime}=\theta^{\prime}=-3 & \text { when } n=5, \text { with multiplicity } m_{1}=\binom{n-1}{2}=6 \\ \theta^{\prime}=-2 n+7 & \text { when } n>5, \text { with multiplicity } m_{1}=\binom{n-1}{2}-1\end{cases}
$$

This gives us $\left|\mathcal{L}_{n}\right|=\binom{n}{2}$ lines in dimension $v-m_{1}=n$ when $n>5,10$ lines in dimension $v-m_{1}=4$ when $n=5$, and hardly any lines in dimension $\binom{n}{2}$ when $n=3,4$. The number of lines in dimension $n>5$ is close but not quite enough to meet the absolute bound, so we can't decide this way whether the absolute bound is attainable for $n>5$.

In dimension $d=5$, though, we have exactly $\binom{d+1}{2}=10$ lines, proving that the absolute bound can be attained in that dimension. The angle of these lines is $\arccos \frac{1}{3}$.

2.2. Get the parameters of $\overline{\mathcal{L}}_{n}$.

The eigenvalues of $S\left(\overline{L\left(K_{n}\right)}\right)=-S$ are

$$
\begin{aligned}
& \bar{k}^{\prime}=-k^{\prime}=-\binom{n}{2}+4 n-7, \\
& \bar{\theta}^{\prime}=-\theta^{\prime}=2 n-7, \\
& \bar{\tau}^{\prime}=-\tau^{\prime}=-3,
\end{aligned}
$$

with the same multiplicities as with S (of course). Again, some eigenvalues might be equal; we need $\lambda_{1}(-S)$ and its multiplicity. Since $\bar{\theta}^{\prime}>\bar{\tau}^{\prime}$, the least eigenvalue is the smaller of \bar{k}^{\prime} and $\bar{\tau}^{\prime}=-3$; a calculation gives

$$
\begin{cases}\bar{k}^{\prime}>\bar{\tau}^{\prime} & \text { when } n<8 \\ \bar{k}^{\prime}=\bar{\tau}^{\prime} & \text { when } n=8 \\ \bar{k}^{\prime}<\bar{\tau}^{\prime} & \text { when } n>8\end{cases}
$$

Therefore,

$$
\lambda_{1}(S)= \begin{cases}\bar{\tau}^{\prime}=-3 & \text { when } n<8, \text { with multiplicity } m_{1}=\binom{n-1}{2}-1, \\ \bar{k}^{\prime}=\bar{\tau}^{\prime}=-3 & \text { when } n=8, \text { with multiplicity } m_{1}=\binom{n-1}{2}=21, \\ \bar{k}^{\prime}=-\binom{n}{2}+4 n-7 & \text { when } n>8, \text { with multiplicity } m_{1}=1 .\end{cases}
$$

The number of lines we get this way is $\left|\overline{\mathcal{L}}_{n}\right|=\binom{n}{2}$ lines in dimension n when $n=3,4, \ldots, 7$, 28 lines in dimension $28-21=7$ when $n=8$ (this is the case in the book), and $\binom{n}{2}$ lines in dimension $\binom{n}{2}-1$ for $n>8$ (a pathetically small number for that dimension, since the coordinate axes already give us $\binom{n}{2}-1$ lines in that dimension).

You can see the dramatic effect of the coincidence of equality of eigenvalues of $S\left(\overline{L\left(K_{8}\right)}\right)$ (and for $S\left(L\left(K_{5}\right)\right)$). We just accidentally, as it were, achieve the absolute bound. The lines in $\overline{\mathcal{L}}_{8}$ have angle $\arccos \frac{1}{3}$; curiously, the same as in \mathcal{L}_{5}.

For $3 \leq n \leq 7$ we don't get that close, because the dimension doesn't happen to be quite low enough. For $n>8$ we get nothing of interest, at least for getting the most lines.

