
Equiangular Lines from Complete-Graph Line Graphs
Notes by T. Zaslavsky

Trying to figure out the example of 20 (= many) equiangular lines in R7 (from L(K8),
Godsil & Royle, pages 250–251) led me to examine how to get equiangular line sets from

L(Kn) and its complement L(Kn).
This write-up is supposed to be a detailed explanation of all the steps, which were not all

given in detail by Godsil & Royle.

1. Equiangular lines from strongly regular graphs

There are two steps in going from a strongly regular graph X = SRG(v, k, a, c) to a set of
v equiangular lines.

Step 1: Start with a strongly regular graph X.
Step 2: Convert A(X) to the Seidel matrix S(X), i.e., the adjacency matrix of (Kn, σ)

where Σ− = X.
Step 3: Use S(X) to get the angle and dimension of the set L of equiangular lines.
Step 4: Get the unit vectors that generate the lines. (We don’t pay too much attention

to this step. It’s matrix theory.)

1.1. Start with X.
Assume X and X are connected. We know the eigenvalues and multiplicities:

k with multiplicity 1,

θ = 1
2
[a− c+

√
∆] with multiplicity mθ = 1

2

[
v − 1− 2k + (v − 1)(a− c)√

∆

]
,

τ = 1
2
[a− c−

√
∆] with multiplicity mτ = 1

2

[
v − 1 +

2k + (v − 1)(a− c)√
∆

]
,

where ∆ = (a− c)2 + 4(k − c).

1.2. Convert the matrix.
Write A := A(X), A := A(X), S := S(X), and S(X) = −S. Since S = A − A, we get

S = J − I − 2A.
Consider the eigenvectors:

1 gives S1 = J1− 1− 2A1 = (v − 1− 2k)1.
x ⊥ 1 gives Sx = Jx−x−2Ax = (0−1−2θ)x or (0−1−2τ)x, depending on which
eigenvalue is associated to x.

So, the eigenvalues follow the pattern:

k 7→ k′ = v − 1− 2k,
θ 7→ θ′ = −1− [a− c+

√
∆],

τ 7→ τ ′ = −1− [a− c−
√

∆],

with the same multiplicities.
There is a possible trick here. Note that τ ′ > θ′ (if ∆ 6= 0) so the smallest eigenvalue is

either k′ or θ′, but k′ might turn out to equal θ′, thereby increasing the multiplicity of the
least eigenvalue to mθ + 1.
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1.3. Get the parameters of L.
That means find the least eigenvalue of S, say λ1(S) (necessarily negative), and its mul-

tiplicity m1. Then form the matrix S − λ1I, then normalize the diagonal to I by going to
I − 1

λ1
S. This is a positive semi-definite matrix so it is a Gram matrix of vectors, i.e., the

columns of a matrix M such that MTM = I − 1
λ1
S. The dimension is the rank of M , which

equals the rank of MTM ; therefore, the latter is v − nul(M) = v −m1.
The value of λ1 is k′ or θ′ and the multiplicity is 1, mθ, or mθ + 1, depending on how

things work out.
Conclusion: We get v lines in Rv−m1 with angle arccos(− 1

λ1
).

1.4. Get the parameters of L.
We could have used −S = S(X) instead to produce a different set L of equiangular

lines. (This simple relationship between S(X) and S(X) is a great help in examples.) The
eigenvalues are −k′, −θ′, −τ ′ with the same multiplicities as before. We know −θ′ > −τ ′
(if ∆ 6= 0)) so the least eigenvalue is either −k′ or −τ ′, but as before it’s possible that
−k′ = −τ ′, so the least eigenvalue is either −k′ or −τ ′ and its multiplicity might turn out
to be 1, mτ , or mτ + 1.

2. Apply to the line graph of the complete graph

Now we look at the example X = L(Kn) = SRG(
(
n
2

)
, 2(n−2), n−2, 4) and the equiangular

line families Ln that can be obtained from L(Kn) and Ln from L(Kn). This will include

both L(K8) with its line family L8 and also the original example, L(K8), with its line family
L8.

Here ∆ = (n− 6)2 + 4([2n− 4]− 4) = (n− 2)2, which makes
√

∆ = n− 2, a nice number
and definitely nonzero. Let’s assume n ≥ 3, since when n ≤ 2 the line graph is totally trivial.
Therefore, θ > τ so θ′ < τ ′.

The eigenvalues of L(Kn) are

k = 2(n− 2) with multiplicity 1,
θ = 1

2
[n− 6 + (n− 2)] = n− 4 with multiplicity

mθ =
1

2

[(n
2

)
− 1−

4(n− 2) + (
(
n
2

)
− 1)(n− 6)

√
∆

]
= n− 1,

τ = 1
2
[n− 6− (n− 2)] = −2 with multiplicity

mτ =
1

2

[(n
2

)
− 1 +

4(n− 2) + (
(
n
2

)
− 1)(n− 6)

√
∆

]
=

(
n− 1

2

)
− 1.

2.1. Get the parameters of Ln.
The eigenvalues of S = S(L(Kn)) are

k′ =
(
n
2

)
− 1− 4(n− 2) =

(
n
2

)
− 4n+ 7,

θ′ = −1− 2(n− 4) = −2n+ 7,
τ ′ = −1− 2(−2) = 3,

with the same multiplicities, though now some eigenvalues might be equal.
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We have to decide what λ1(S) is and its multiplicity. Since θ′ < τ ′, λ1(S) is the smaller
of k′ and θ′. A calculation shows that

k′ < θ′ when n < 5,

k′ = θ′ when n = 5,

k′ > θ′ when n > 5.

Therefore,

λ1(S) =


k′ =

(
n
2

)
− 4n+ 7 when n < 5, with multiplicity m1 = 1,

k′ = θ′ = −3 when n = 5, with multiplicity m1 =
(
n−1
2

)
= 6,

θ′ = −2n+ 7 when n > 5, with multiplicity m1 =
(
n−1
2

)
− 1.

This gives us |Ln| =
(
n
2

)
lines in dimension v−m1 = n when n > 5, 10 lines in dimension

v −m1 = 4 when n = 5, and hardly any lines in dimension
(
n
2

)
when n = 3, 4. The number

of lines in dimension n > 5 is close but not quite enough to meet the absolute bound, so we
can’t decide this way whether the absolute bound is attainable for n > 5.

In dimension d = 5, though, we have exactly
(
d+1
2

)
= 10 lines, proving that the absolute

bound can be attained in that dimension. The angle of these lines is arccos 1
3
.

2.2. Get the parameters of Ln.
The eigenvalues of S(L(Kn)) = −S are

k̄′ = −k′ = −
(
n
2

)
+ 4n− 7,

θ̄′ = −θ′ = 2n− 7,
τ̄ ′ = −τ ′ = −3,

with the same multiplicities as with S (of course). Again, some eigenvalues might be equal;
we need λ1(−S) and its multiplicity. Since θ̄′ > τ̄ ′, the least eigenvalue is the smaller of k̄′

and τ̄ ′ = −3; a calculation gives 
k̄′ > τ̄ ′ when n < 8,

k̄′ = τ̄ ′ when n = 8,

k̄′ < τ̄ ′ when n > 8.

Therefore,

λ1(S) =


τ̄ ′ = −3 when n < 8, with multiplicity m1 =

(
n−1
2

)
− 1,

k̄′ = τ̄ ′ = −3 when n = 8, with multiplicity m1 =
(
n−1
2

)
= 21,

k̄′ = −
(
n
2

)
+ 4n− 7 when n > 8, with multiplicity m1 = 1.

The number of lines we get this way is |Ln| =
(
n
2

)
lines in dimension n when n = 3, 4, . . . , 7,

28 lines in dimension 28 − 21 = 7 when n = 8 (this is the case in the book), and
(
n
2

)
lines

in dimension
(
n
2

)
− 1 for n > 8 (a pathetically small number for that dimension, since the

coordinate axes already give us
(
n
2

)
− 1 lines in that dimension).

You can see the dramatic effect of the coincidence of equality of eigenvalues of S(L(K8))
(and for S(L(K5))). We just accidentally, as it were, achieve the absolute bound. The lines
in L8 have angle arccos 1

3
; curiously, the same as in L5.

For 3 ≤ n ≤ 7 we don’t get that close, because the dimension doesn’t happen to be quite
low enough. For n > 8 we get nothing of interest, at least for getting the most lines.
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