Equiangular Lines from Complete-Graph Line Graphs Notes by T. Zaslavsky

Trying to figure out the example of 20 (= many) equiangular lines in \mathbb{R}^7 (from $\overline{L(K_8)}$, Godsil & Royle, pages 250–251) led me to examine how to get equiangular line sets from $L(K_n)$ and its complement $\overline{L(K_n)}$.

This write-up is supposed to be a detailed explanation of all the steps, which were not all given in detail by Godsil & Royle.

1. Equiangular lines from strongly regular graphs

There are two steps in going from a strongly regular graph X = SRG(v, k, a, c) to a set of v equiangular lines.

Step 1: Start with a strongly regular graph X.

Step 2: Convert A(X) to the Seidel matrix S(X), i.e., the adjacency matrix of (K_n, σ) where $\Sigma^- = X$.

Step 3: Use S(X) to get the angle and dimension of the set \mathcal{L} of equiangular lines.

Step 4: Get the unit vectors that generate the lines. (We don't pay too much attention to this step. It's matrix theory.)

1.1. Start with X.

Assume X and \overline{X} are connected. We know the eigenvalues and multiplicities:

k with multiplicity 1,

$$\theta = \frac{1}{2}[a - c + \sqrt{\Delta}] \text{ with multiplicity } m_{\theta} = \frac{1}{2}\left[v - 1 - \frac{2k + (v - 1)(a - c)}{\sqrt{\Delta}}\right],$$

$$\tau = \frac{1}{2}[a - c - \sqrt{\Delta}] \text{ with multiplicity } m_{\tau} = \frac{1}{2}\left[v - 1 + \frac{2k + (v - 1)(a - c)}{\sqrt{\Delta}}\right]$$

where $\Delta = (a - c)^2 + 4(k - c)$.

1.2. Convert the matrix.

Write A := A(X), $\overline{A} := A(\overline{X})$, S := S(X), and $S(\overline{X}) = -S$. Since $S = \overline{A} - A$, we get S = J - I - 2A.

Consider the eigenvectors:

1 gives $S\mathbf{1} = J\mathbf{1} - \mathbf{1} - 2A\mathbf{1} = (v - 1 - 2k)\mathbf{1}$. $x \perp \mathbf{1}$ gives $Sx = Jx - x - 2Ax = (0 - 1 - 2\theta)x$ or $(0 - 1 - 2\tau)x$, depending on which eigenvalue is associated to x.

So, the eigenvalues follow the pattern:

$$\begin{split} k &\mapsto k' = v - 1 - 2k, \\ \theta &\mapsto \theta' = -1 - [a - c + \sqrt{\Delta}], \\ \tau &\mapsto \tau' = -1 - [a - c - \sqrt{\Delta}], \end{split}$$

with the same multiplicities.

There is a possible trick here. Note that $\tau' > \theta'$ (if $\Delta \neq 0$) so the smallest eigenvalue is either k' or θ' , but k' might turn out to equal θ' , thereby increasing the multiplicity of the least eigenvalue to $m_{\theta} + 1$.

1.3. Get the parameters of \mathcal{L} .

That means find the least eigenvalue of S, say $\lambda_1(S)$ (necessarily negative), and its multiplicity m_1 . Then form the matrix $S - \lambda_1 I$, then normalize the diagonal to I by going to $I - \frac{1}{\lambda_1}S$. This is a positive semi-definite matrix so it is a Gram matrix of vectors, i.e., the columns of a matrix M such that $M^T M = I - \frac{1}{\lambda_1}S$. The dimension is the rank of M, which equals the rank of $M^T M$; therefore, the latter is $v - \operatorname{nul}(M) = v - m_1$.

The value of λ_1 is k' or θ' and the multiplicity is 1, m_{θ} , or $m_{\theta} + 1$, depending on how things work out.

Conclusion: We get v lines in \mathbb{R}^{v-m_1} with angle $\arccos(-\frac{1}{\lambda_1})$.

1.4. Get the parameters of $\overline{\mathcal{L}}$.

We could have used $-S = S(\overline{X})$ instead to produce a different set $\overline{\mathcal{L}}$ of equiangular lines. (This simple relationship between $S(\overline{X})$ and S(X) is a great help in examples.) The eigenvalues are -k', $-\theta'$, $-\tau'$ with the same multiplicities as before. We know $-\theta' > -\tau'$ (if $\Delta \neq 0$)) so the least eigenvalue is either -k' or $-\tau'$, but as before it's possible that $-k' = -\tau'$, so the least eigenvalue is either -k' or $-\tau'$ and its multiplicity might turn out to be 1, m_{τ} , or $m_{\tau} + 1$.

2. Apply to the line graph of the complete graph

Now we look at the example $X = L(K_n) = \text{SRG}(\binom{n}{2}, 2(n-2), n-2, 4)$ and the equiangular line families \mathcal{L}_n that can be obtained from $L(K_n)$ and $\overline{\mathcal{L}}_n$ from $\overline{L(K_n)}$. This will include both $L(K_8)$ with its line family \mathcal{L}_8 and also the original example, $\overline{L(K_8)}$, with its line family $\overline{\mathcal{L}}_8$.

Here $\Delta = (n-6)^2 + 4([2n-4]-4) = (n-2)^2$, which makes $\sqrt{\Delta} = n-2$, a nice number and definitely nonzero. Let's assume $n \ge 3$, since when $n \le 2$ the line graph is totally trivial. Therefore, $\theta > \tau$ so $\theta' < \tau'$.

The eigenvalues of $L(K_n)$ are

k = 2(n-2) with multiplicity 1, $\theta = \frac{1}{2}[n-6+(n-2)] = n-4 \text{ with multiplicity}$ $1 \vdash (n) \qquad 4(n-2) + \binom{n}{2} - 1(n-6)$

$$m_{\theta} = \frac{1}{2} \left[\binom{n}{2} - 1 - \frac{4(n-2) + \binom{n}{2} - 1(n-6)}{\sqrt{\Delta}} \right] = n - 1,$$

 $\tau = \frac{1}{2}[n-6-(n-2)] = -2$ with multiplicity

$$m_{\tau} = \frac{1}{2} \left[\binom{n}{2} - 1 + \frac{4(n-2) + \binom{n}{2} - 1(n-6)}{\sqrt{\Delta}} \right] = \binom{n-1}{2} - 1.$$

2.1. Get the parameters of \mathcal{L}_n .

The eigenvalues of $S = S(L(K_n))$ are

$$k' = \binom{n}{2} - 1 - 4(n-2) = \binom{n}{2} - 4n + 7,$$

$$\theta' = -1 - 2(n-4) = -2n + 7,$$

$$\tau' = -1 - 2(-2) = 3,$$

with the same multiplicities, though now some eigenvalues might be equal.

We have to decide what $\lambda_1(S)$ is and its multiplicity. Since $\theta' < \tau'$, $\lambda_1(S)$ is the smaller of k' and θ' . A calculation shows that

$$\begin{cases} k' < \theta' & \text{when } n < 5, \\ k' = \theta' & \text{when } n = 5, \\ k' > \theta' & \text{when } n > 5. \end{cases}$$

Therefore,

$$\lambda_1(S) = \begin{cases} k' = \binom{n}{2} - 4n + 7 & \text{when } n < 5, \text{ with multiplicity } m_1 = 1, \\ k' = \theta' = -3 & \text{when } n = 5, \text{ with multiplicity } m_1 = \binom{n-1}{2} = 6, \\ \theta' = -2n + 7 & \text{when } n > 5, \text{ with multiplicity } m_1 = \binom{n-1}{2} - 1. \end{cases}$$

This gives us $|\mathcal{L}_n| = \binom{n}{2}$ lines in dimension $v - m_1 = n$ when n > 5, 10 lines in dimension $v - m_1 = 4$ when n = 5, and hardly any lines in dimension $\binom{n}{2}$ when n = 3, 4. The number of lines in dimension n > 5 is close but not quite enough to meet the absolute bound, so we can't decide this way whether the absolute bound is attainable for n > 5.

In dimension d = 5, though, we have exactly $\binom{d+1}{2} = 10$ lines, proving that the absolute bound can be attained in that dimension. The angle of these lines is $\arccos \frac{1}{3}$.

2.2. Get the parameters of \mathcal{L}_n .

The eigenvalues of $S(\overline{L(K_n)}) = -S$ are $\bar{k}' = -k' = -\binom{n}{2} + 4n - 7.$

$$\bar{\theta}' = -\theta' = 2n - 7, \bar{\tau}' = -\tau' = -3,$$

with the same multiplicities as with S (of course). Again, some eigenvalues might be equal; we need $\lambda_1(-S)$ and its multiplicity. Since $\bar{\theta}' > \bar{\tau}'$, the least eigenvalue is the smaller of \bar{k}' and $\bar{\tau}' = -3$; a calculation gives

$$\begin{cases} \bar{k}' > \bar{\tau}' & \text{when } n < 8, \\ \bar{k}' = \bar{\tau}' & \text{when } n = 8, \\ \bar{k}' < \bar{\tau}' & \text{when } n > 8. \end{cases}$$

Therefore,

$$\lambda_1(S) = \begin{cases} \bar{\tau}' = -3 & \text{when } n < 8, \text{ with multiplicity } m_1 = \binom{n-1}{2} - 1, \\ \bar{k}' = \bar{\tau}' = -3 & \text{when } n = 8, \text{ with multiplicity } m_1 = \binom{n-1}{2} = 21, \\ \bar{k}' = -\binom{n}{2} + 4n - 7 & \text{when } n > 8, \text{ with multiplicity } m_1 = 1. \end{cases}$$

The number of lines we get this way is $|\overline{\mathcal{L}}_n| = \binom{n}{2}$ lines in dimension n when $n = 3, 4, \ldots, 7$, 28 lines in dimension 28 - 21 = 7 when n = 8 (this is the case in the book), and $\binom{n}{2}$ lines in dimension $\binom{n}{2} - 1$ for n > 8 (a pathetically small number for that dimension, since the coordinate axes already give us $\binom{n}{2} - 1$ lines in that dimension).

You can see the dramatic effect of the coincidence of equality of eigenvalues of $S(L(K_8))$ (and for $S(L(K_5))$). We just accidentally, as it were, achieve the absolute bound. The lines in $\overline{\mathcal{L}}_8$ have angle $\arccos \frac{1}{3}$; curiously, the same as in \mathcal{L}_5 .

For $3 \le n \le 7$ we don't get that close, because the dimension doesn't happen to be quite low enough. For n > 8 we get nothing of interest, at least for getting the most lines.