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SIGNED GRAPHS AND GEOMETRY

THOMAS ZASLAVSKY

1. INTRODUCTION

These lecture notes are a personal introduction to signed graphs, concentrating on
the aspects that have been most persistently interesting to me. They are just a
few corners of signed graph theory; I am leaving out a great deal. The emphasis is
on the way signed graphs arise naturally from geometry, especially from the
geometry of the classical root systems. Most of the properties I discuss generalize
those of unsigned graphs, but the constructions and proofs are often more
complicated. My aim is a coherent presentation of the subject, with a few illustrative
proofs and adequate references. Hence the arrangement of the notes is topical
with only occasional remarks about the historical course of development. Though
this is mainly an expository survey, some of the results have not hitherto been
published.

For a fairly comprehensive list of articles on signed graphs, generalizations,
and related work see [B]; for (much of the) terminology see [G]. The principal
reference for most of the more elementary properties of signed graphs treated
here is Zaslavsky (1982a). A simple introduction to the hyperplane geometry is
Zaslavsky (1981a). (N.B. Citations in the style Name (YEARa) refer to author
Name’s item (YEARa) in [B].) Many of my articles can be downloaded from my
Web site,

http://www.math.binghamton.edu/zaslav/Tpapers/

Now, bon voyage! Shubha Yatra!

1. GRAPHS

We begin with a review of graph theory. Much is familiar but signed graphs
require several extensions of the ordinary theory.
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A graph is Γ = (V,E), where V := V(Γ) is the vertex set and E := E(Γ) is the
edge set. In these lectures all graphs are finite.

Notation.

• The set sum or symmetric difference of two sets A and B is denoted by

A ⊕ B := (A \ B) ∪ (B \ A).

• n := |V|, called the order of Γ.

• V(e) is the multiset of vertices of the edge e.

 • If S ⊆  E, V(S) is the set of endpoints of edges in S.

 • If S ⊆ E, its complement is S
c
 := E \ S.

 • If X ⊆ V, its complement is X
c
 := V \ X.

Edges and edge sets

• We allow multiple edges as well as loops and oddball objects called half and
loose edges.

• There are four kinds of edge:

A link has two distinct endpoints.

A loop has two equal endpoints.

A half edge has one endpoint.

A loose edge has no endpoints.

• An ordinary edge is a link or a loop.

• The set of loose edges of Γ is E0(Γ). The set of ordinary edges of Γ is
E

*
 := E

*
(Γ).

• Edges are parallel if they have the same endpoints.

• An ordinary graph is a graph in which every edge is a link or a loop.

• A link graph is a graph whose edges are links.

• A simple graph is a link graph with no parallel edges.

• E(X, Y), where X, Y  ⊆  V , is the set of edges with one endpoint in X and
the other in Y . (Every such edge must be a link or, if X ∩ Y ≠ ∅ , a loop.)
A cut or cutset is an edge set E(X, X

c
) that is nonempty.
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Vertices and vertex sets in Γ. Let X ⊆ V.

• An isolated vertex is a vertex that has no incident edges; i.e., a vertex of
degree 0.

• X is stable or independent if, aside from loose edges, no edge has all endpoints
in X.

Degrees and regularity.

• The degree of a vertex v, d(v) := dΓ(v), is the number of edge ends of which
v is an endpoint. A loop counts twice, once for each end.

 • Γ is regular if every vertex has the same degree. If that degree is k, it is
k -regular.

Walks, trails, paths, circles.

• A walk is a sequence v0e1v1. . . elvl where ; and l ≥ 0. Its
length is l. A walk may be written e2e2 . . .el or v0v1 . . . vl.

• A closed walk is a walk where l ≥ 1 and v0 = vl.

• A trail is a walk with no repeated edges.

• A path or open path is a trail with no repeated vertex, or the graph of such
a trail (technically, the latter is a path graph), or the edge set of a path
graph.

• A closed path is a closed trail with no repeated vertex other than that
v0 = vl. (Thus, a closed path is not a path.)

• A circle (also called ‘cycle’, ‘polygon’, etc.) is the graph, or the edge set, of
a closed path. Equivalently, it is a connected, regular graph with degree 2,
or its edge set.

•  = (Γ) is the class of all circles in Γ.

Examples.

• Kn is the complete graph of order n. KX is the complete graph with vertex
set X.

• K
c
n is the edgeless graph of order n.

• Γc is the complement of Γ, if Γ is simple.
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• Pl is a path of length l (as a graph or edge set).

• Cl is a circle of length l (as a graph or edge set).

• Kr,s is the complete bipartite graph with r left vertices and s right vertices
KX,Y is the complete bipartite graph with left vertex set X and right vertex
set Y.

• The empty graph, ∅ := (∅,∅), has no vertices and no edges. It is not
connected.

Types of subgraph. In Γ , let X ⊆ V and S ⊆ E.

• A component (or connected component) of Γ is a maximal connected subgraph,
excluding loose edges. An isolated vertex is a component that has one
vertex and no edges. A loose edge is not a component.

• c(Γ) is the number of components of Γ. c(S) is short for c(V, S).

• A spanning subgraph is Γ′ ⊆ Γ such that V′ = V .

• Γ|S := (V, S). This is a spanning subgraph.

• S:X := {e ∈ S : ∅ ≠ V(e) ⊆ X} = (E:X) ∩ S. We often write S:X as short for
the subgraph (X, S:X).

 The induced subgraph Γ:X is the subgraph Γ:X := (X,E:X). An induced subgraph
has no loose edges. We often write E:X as short for (X,E:X).

• Γ\S := (V,E \S) = Γ\Sc.

• Γ\X is the subgraph with

V (Γ\X): = Xc and E(Γ\X) := {e ∈ E | V (e)  ⊆ V \X}.

We say X is deleted from Γ. Γ \ X includes all loose edges, if there are any
(unlike Γ:Xc, which has no loose edges).

Graph structures and types.

• A theta graph is the union of three internally
disjoint paths that have the same endpoints.

• A block of Γ is a maximal subgraph without loose edges, such that every
pair of edges is in a circle together. The simplest kinds of block are an
isolated vertex, and a subgraph ({v}, {e}) where e is a loop or half edge at
vertex v. A loose edge is not in any block of Γ.
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• Γ is inseparable if it has only one block.

• A cutpoint is a vertex that belongs to more than one block.

Fundamental circles.

Let T be a maximal forest in Γ. If e ∈ E*\
T, there is a unique circle Ce  ⊆ T ∪ {e}. The
fundamental system of circles for Γ, with respect
to T, is the set of all circles Ce for e ∈ E*\T.

Proposition 1.1. Choose a maximal forest T. Every circle in Γ is the set sum of
fundamental circles with respect to T.

Proof: 

2. SIGNED GRAPHS

A signed graph Σ  = (Γ, σ) = (V, E, σ) is a graph Γ together with a function  that
assigns a sign, σ(e) ∈ {+,−}, to each ordinary edge (link or loop) in Γ. σ is called
the signature (or sign function). A half or loose edge does not get a sign. Thus, the
signature is  σ : E

* 
→ {+,−}.

Notation:

• |Σ| is the underlying graph Γ.

• E+ := σ−1(+) = {e ∈  E : σ(e) = +}: The positive subgraph is Σ+:= (V, E+).

• E−:= σ−1(  ) = e ∈  E : σ(e) = −}: The negative subgraph is Σ−
: = (V, E−).

• +Γ:= (Γ, +) is an all-positive signed graph (every ordinary edge is +).
e ∈ E

*
(Γ) becomes +e ∈ +E = E(+Γ).

• −Γ:= (Γ, −) is an all-negative signed graph (every ordinary edge is −).
e ∈ E

*
(Γ) becomes −e ∈ − E = E(−Γ).

• ±Γ := (+Γ) ∪ (−Γ). E(±Γ) = ±E := (+E) ∪ (−E). This is the signed
expansion of Γ.

 • Σ• :=  Σ with a half edge or negative loop attached to every vertex that
does not have one. Σ•  is called a full signed graph.

• Σ° :=  Σ with a negative loop attached to every vertex that does not have
one.

−−−−

−
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• Equivalent notations for the sign group are {+, −}, {+1, −1}, etc. We
consider + and +1 equivalent, also − and −1; this is important when we
add signs in matrix matters. (Another notation is Z

2
 := {0, 1} modulo 2,

but that is unsuitable here because we need addition to imply summation
of ± 1’s.)

Signed graphs Σ
1
 and Σ

2
 are isomorphic, written Σ

1
 ≅ Σ

2
, if there is an

isomorphism between their underlying graphs that preserves the signs of edges.

2.1. Balance.

Balance or imbalance is the fundamental property of a signed graph.

2.1.1. Signs and balance.

• The sign of a walk, σ(W), is the product of the signs of its edges, including
repeated edges.

• The sign of an edge set, σ(S), is the product of the signs of its edges,
without repetition.

• The sign of a circle, σ(C), is the same whether the circle is treated as a
walk or as an edge set.

• The class of positive circles is

• Σ is balanced if it has no half edges and every circle in it is positive.
Similarly, any subgraph or edge set is balanced if it has no half edges and
every circle in it is positive.

• A circle is balanced if and only if it is positive. However, in general, a walk
cannot be balanced because it is not a graph or edge set.

• A negative digon is a circle of length 2 (i.e., a pair of parallel edges) that
has one positive edge and one negative edge.

• b(Σ) is the number of components of Σ (omitting loose edges) that are
balanced.

b(S) is short for b(Σ|S).

•  is a balanced component of Σ}. Then 

is short for .
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• V0(∑) is the set of vertices of unbalanced components of Σ. Formally,
V0(Σ) :=  is short for V0(Σ|S).

In the figure below,  = {B1, B2} and V0(Σ) = V \ (B1 ∪ B2).

2.1.2. Criteria for balance.

A bipartition of a set X is an unordered pair {X
1
, X

2
} such that X

1
 ∪ X

2
 = X

and X1 ∩ X2 = . X1 or X2 could be empty.

Theorem 2.1 (Harary’s Balance Theorem (1953a)). The following statements
about a signed graph are equivalent.

(i) Σ is balanced.

(ii) Σ has no half edges and there is a bipartition V = V1 ∪ V2 such that E
−
 =

E(V
1
, V

2
).

(iii) Σ has no half edges and any two paths with the same endpoints have the
same sign.

We give a short proof (not the original one) after Corollary 2.7.

I like to call {V1, V2} as in
the theorem a Harary bipartition
of Σ. An example appears at the
right. The circled and boxed
vertices form the two sets of the
bipartition.
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Corollary 2.2. −Γ is balanced if and only if Γ is bipartite.

Thus, balance is a generalization of bipartiteness.

Balance is determined by blocks.

Proposition 2.3.  Σ is balanced if and only if every block is balanced.

Deciding whether a signed graph is balanced or not is easy; see the algorithm
in Section 2.2.2.

2.1.3. Balancing vertices and edges.

• A balancing vertex is a vertex v such that Σ\v is balanced although Σ is
unbalanced.

• A partial balancing edge is an edge e such that Σ\e has more balanced
components than does Σ.

• A total balancing edge is an edge e such that Σ\e is balanced although Σ is
not balanced. A total balancing edge is a partial balancing edge, but a
partial balancing edge may not be a total balancing edge.

Partial balancing edges are closely related to the geometry of signed graphs,
so we record a classification.

Proposition 2.4. An edge e is a partial balancing edge of Σ if and only if it is
either

(a) an isthmus between two components of Σ\e, of which at least one is balanced,
or

(b) a negative loop or half edge in a component Σ′  such that Σ′\e is balanced, or

(c) a link with endpoints v,w, which is not an isthmus, in a component Σ′ such
that Σ′\e is balanced and every vw-path in Σ′ \e has sign −σ(e).

Proof. We may assume Σ is connected.

(a) It is easy to see when an isthmus is a partial balancing edge.

(b) It is also easy to see when a negative loop or a half edge is a partial
balancing edge.

(c) Suppose e is a link vw, not an isthmus. For e to be a partial balancing edge
it is necessary that Σ\e be balanced. Supposing that is true, e is a partial
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balancing edge if and only if Σ is unbalanced, which is true if and only if
σ(e) differs from the sign of some vw-path P. By Theorem 2.1(iii), the
choice of P does not matter.

In the next diagram, ‘b’ denotes a partial balancing edge, of which there are
several.

Determining whether Σ has a partial balancing edge, and finding them all, is
easy. One tests each component Σ′  for balance. If it is unbalanced, test each edge
e to see whether every component of Σ′ \e is balanced. That is not the most
efficient method; the algorithm in Section 2.2.2 for determining balance is adaptable
to testing many edges at once. I do not recall any explicit published algorithms for
this problem.

2.1.4. Balancing edge sets.

• Partial balancing set: S such that b(Σ\S) > b(Σ).

• Total balancing set: S such that Σ\S is balanced but Σ is not balanced.

Determining the minimum size of a partial or total balancing set is an NP-
hard problem. It includes the known NP-hard problem of determining the maximum
cut size in a graph, because a minimum partial balancing set in −Γ is the complement
of a maximum cutset in Γ.

2.2. Switching.

A switching function for Σ is a function ζ : V → {+, −}. The switched signature is
, where e has endpoints v,w. The switched signed graph is Σζ

:= (Σ|σζ
). We say Σ is switched by ζ. Note that Σζ

 = Σ−ζ
.

If X ⊆ V , switching Σ by X (or simply switching X) means reversing the sign
of every edge in the cutset E(X,X

c
). The switched graph is ΣX. This is the same as
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Σζ 
where ζ (v) := − if and only if v ∈ X. Switching by ζ or X is the same operation

with different notation. Note that ΣX = ΣXc
.

Switching a one-vertex set {v1}:

Proposition 2.5.

(a) Switching leaves the signs of all closed walks, including all circles, unchanged.
Thus, 

(b) If  then there exists a switching function ζ
such that 

Proof of (a) by formula. Let ζ be a switching function and let 

 be a closed walk. Then

Proof of (b) by defining a switching function. We may assume Σ
1
 is connected.

Pick a spanning tree T and a vertex v0. Define

where  is the path in T from v0 to v. Now it is easy to calculate that 

Signed graphs  and  are switching equivalent, written  if they
have the same underlying graph and there exists a switching function ζ such that

 The equivalence class of Σ,

is called its switching class.
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Similarly, Σ1 and Σ2 are switching isomorphic, written Σ1  Σ2, if Σ1 is
isomorphic to a switching of Σ2. The equivalence class of Σ is called its switching
isomorphism class.

In the next figure not all signed graphs are switching equivalent: Σ2  ∼ Σ3 but
Σ1  Σ2, Σ3. However, all are switching isomorphic: Σ1  Σ2  Σ3.

Proposition 2.6. Switching equivalence, ∼ , is an equivalence relation on
signatures of a fixed underlying graph.

Switching isomorphism,  , is an equivalence relation on signed graphs.

Proof: Obvious!

2.2.1. Switching and balance.

Corollary 2.7. Σ is balanced if and only if it has no half edges and it is
switching equivalent to +|Σ|.

Short Proof of Harary’s Balance Theorem 2.1. We may assume Σ has no half
edges. Σ is balanced  (by Proposition 2.5) it is a switching of +|Σ|  it
equals (+|Σ|)V1 for some V

1
 ⊆ V .

If Σ is balanced, {V1, V \ V2} is the required bipartition. Conversely, if Σ has

a Harary bipartition {V1, V \ V2}, then   . That proves (i)  (ii).

Suppose P,Q are two vw-paths. Then PQ−1 is a closed walk, whose sign is +
 σ(P) = σ(Q). As switching does not alter the sign of closed walks, σ(P) =

σ(Q) when . Thus, balance implies (iii). To prove the inverse, suppose
Σ is not balanced; then it has a negative circle. As the circle sign is unaffected by
switching, Σ cannot switch to +|Σ|.

The original proof was much less efficient−as is often the case with original
proofs.
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2.2.2. An algorithm to detect balance.

Assume Σ is connected. We can apply the proof of Proposition 2.5(ii) to determine
whether Σ can be switched to all positive. That is:

(1) Choose a spanning tree T and a root vertex v0.

(2) Calculate the function ζ(v) = σ(Tv0v
) of that proof.

(3) Switch by ζ.

(4) Look for negative non-tree edges. Σ is balanced  all non-tree edges
are positive (and none is a half edge).

This is essentially the fast algorithm of Hansen (1978a) (his Algorithm 1) and
Harary and Kabell (1980a). The use of switching makes it perhaps more obvious
than in the original publications.

2.3. Deletion, contraction, and minors.

Here R, S denote subsets of E. A component of S means a component of
(V, S). The deletion of S (or, the deletion of Σ by S) is the signed graph Σ \ S :=

. The contraction of S (or, the contraction of Σ by S) is a signed graph
Σ / S, to be defined next, in two stages. Contracting a single edge at a time is
simpler to describe, but contracting an entire set of edges is more useful for
further developments.

2.3.1. Contracting an edge e.

If e is a positive link, delete e and identify its endpoints; do not change any edge
signs. (This is the same as contracting a link in an unsigned graph.)

If e is a negative link, switch Σ by a switching function ζ, chosen so e is
positive in Σζ

; then contract e as a positive link. The choice of ζ does not matter.

In the following diagram the negative link f is contracted.
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Lemma 2.8. In a signed graph Σ any two contractions of a link e are switching
equivalent. The contraction of a link in a switching class is a well defined switching
class.

To contract a positive loop or a loose edge e, just delete e.

If e is a negative loop or half edge and v is the vertex of e, delete v and e, but
not any other edges. Any other edges at v lose their endpoint v. A loop or half edge
at v becomes a loose edge. A link with endpoints v, w becomes a half edge at w.

In the following diagram the negative loop g is contracted.

2.3.2. Contracting an edge set S.

The edge set and vertex set of Σ / S are

This means we identify all the vertices of each balanced component so they
become a single vertex. For f ∈ E(Σ/S), the endpoints are given by the rule

:

(For instance, suppose f is a loop at w in Σ, so that VΣ(f) = {w,w}. If
, then W is a repeated vertex in  so f is a loop in Σ/S. If

w ∈ V
0
(S), then  so f is a loose edge in Σ/S.) To define the signature of

Σ/S, first switch Σ to Σζ
 so every balanced component of S is all positive. Then

Lemma 2.9. (a) Given S ⊆ E(Σ), all contractions Σ/S (by different choices of
how to switch Σ) are switching equivalent. Any switching of one contraction Σ/S is
another contraction and any contraction Σζ /S of a switching of Σ is a contraction
of Σ.
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(b) If |Σ1| = |Σ2|, S ⊆ E is balanced in both Σ1 and Σ2, and Σ1/S and Σ2/S are
switching equivalent, then Σ1 and Σ2 are switching equivalent.

(c) For e ∈ E, [Σ/e] and [Σ/{e}] are essentially the same switching class.

Part (a) means that the switching class [Σ/S] is uniquely defined, even though
the signed graph Σ/S is not unique. Part (c) means that [Σ/e] = [Σ/{e}] except
for details of notation.

2.3.3. Minors.

A minor of Σ is any contraction of any subgraph.

Theorem 2.10. A minor of a minor is a minor. Thus, the result of any sequence
of deletions and contractions of edge and vertex sets of Σ is a minor of Σ.

Proof: The proof is technical but not deep. See Zaslavsky (1982a), Proposition
4.2.

2.4. Frame circuits.

A frame circuit of Σ is a subgraph, or edge set, that is either a positive circle or a
loose edge, or a pair of negative circles that intersect in precisely one vertex and
no edges (this is a tight handcuff circuit), or a pair of disjoint negative circles
together with a minimal path that connects them (this is a loose handcuff circuit).
We regard a tight handcuff circuit as having a connecting path of length 0 (it is
the common vertex of the two circles). A half edge and a negative loop are
equivalent in everything that concerns frame circuits; a ‘negative circle’ in the
definition may be a half edge.

The three kinds of frame circuit:

In +Γ  (if Γ has no half edges), a frame circuit is simply a circle or a loose
edge.

Proposition 2.11. Σ contains a loose handcuff circuit if and only if there is a
component of Σ that contains two vertex-disjoint negative circles.

The proof is elementary. The next is less elementary.
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Proposition 2.12. Let e be an edge in Σ. Then e is contained in a frame circuit
if and only if e is not a partial balancing edge.

Proof: If e lies in a balanced component of Σ, it is in a frame circuit  it is
in a circle  it is not an isthmus  it is not a partial balancing edge. Therefore
we may assume e is in an unbalanced component Σ′.

Necessity. If e is in a frame circuit C, then Σ′ contains C. If e is an isthmus of
C, then Σ′ \e contains both negative circles of C. If Σ′ \e is disconnected, each of
its two components contains one of those negative circles. Therefore, e is not a
partial balancing edge.

If e belongs to a circle in C, then Σ′ \ e is connected. Suppose C is unbalanced;
then C \e is unbalanced so Σ′ \e is unbalanced; thus, e is not a partial balancing
edge.

Suppose to the contrary that C is a positive circle. As there is a negative
circle D in Σ′, for e to be a partial balancing edge it must belong to D; we show
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this leads to a contradiction. If C ∪ D \ e were balanced, it could be switched to be
all positive and then, as D is negative, e would be negative in the switched graph,
but that would contradict the positivity of C. Thus, C ∪ D \ e is unbalanced;
therefore it contains a negative circle, so Σ′ \ e is unbalanced and e is not a partial
balancing edge.

Sufficiency. Conversely, suppose e is not a partial balancing edge; we produce
a frame circuit C containing e. As Σ′ \ e is unbalanced, it has a negative circle D.
If e is an unbalanced edge (a half edge or negative loop) at v, there is a path P in
Σ′ from v to D; then C = D ∪ P ∪ e.

If e is a balanced edge, it is a link with endpoints v,w.

If it is an isthmus, then Σ′ \ e has two components, both unbalanced (by
Proposition 2.4), so C is a negative circle in each of those components together
with a connecting path (which must contain e).

If e is not an isthmus, it lies in a circle C ′. If C ′ is positive, let C = C ′. But
suppose C ′ is negative; then there are three subcases, depending on how many
points of intersection C ′ has with D. If there are no such points, take a minimal
path P connecting C ′ to D and let C = D ∪ P ∪ C ′. If there is just one such point,
C = D ∪ C ′. If there are two or more such points, take P to be a maximal path in
C ′ that contains e and is internally disjoint from D. Then P ∪ D is a theta graph in
which D is negative; hence one of the two circles containing P is positive, and this
is the circuit C.  

Proposition 2.11 suggests vertex-disjoint negative circles are important, which
is true. There is an important theorem about when they do not exist.

Theorem 2.13 (Slilaty (2007a)). Σ has no two vertex-disjoint negative circles
if and only if one or more of the following is true:

(a)  Σ is balanced,

(b)  Σ has a balancing vertex,

(c)  Σ embeds in the projective plane, or

(d)  Σ is one of a few exceptional cases.

We will not discuss embedding in the projective plane, which is a large topic
in itself; see Zaslavsky (1993a), Archdeacon and Debowsky (2005a).
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2.5. Closure and closed sets.

Closure of edge sets is a main property of ordinary graphs. It generalizes to signed
graphs but it becomes much more complicated.

2.5.1. Closure in signed graphs.

The definition of closure begins with an auxiliary operation. The balance-closure of
an edge set S is

 a positive circle  such that 

The closure of S is

where S1, . . . , Sk are the balanced components of S.

An edge set is closed if it equals its own closure: clos S = S. We write

When partially ordered by set inclusion, Lat Σ is a lattice.

A half edge and a negative loop are equivalent in everything that concerns
closure.

The usual closure operator in a graph Γ is the same as closure in +Γ. By way
of comparison, observe that the only kind of frame circuit in an ordinary graph is
a circle—any circle, since in +Γ every circle is positive. That makes graph closure
simple.

2.5.2. Balance properties.

Lemma 2.14. For an edge set S, bcl(S) is balanced if and only if S is balanced.
Furthermore, if S is balanced, bcl(bcl S) = bcl(S) = clos(S).

Lemma 2.15. For an edge set S, 
=  

2.5.3. Abstract closure.

Let E be any set; its power set is the class  of all subsets of E. A function
J :  →  is an abstract closure operator on E if it has the three properties
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Theorem 2.16. The operator clos on subsets of E(Σ) is an abstract closure
operator.

Proof: The definition makes it clear that clos is increasing and isotonic.
What remains to be proved is that clos(clos(S)) = clos(S).

Let  is balanced. By the definition of closure
and Lemma 2.15,

        

2.5.4. Matroid closure.

The closure operator of a signed graph has an additional property, the exchange
property, whose theory is the theory of matroids. That is, closΣ is a matroid
closure. Matroids are too complicated to explain here; see [3]. One aspect of
matroid closure we do want is:

Theorem 2.17. For S ⊆ E,

Proof: Both parts of the proof depend heavily on Proposition 2.12. We treat
a half edge as if it were a negative loop, and for simplicity we neglect loose edges.

Necessity. We want to prove that if e ∈ clos S, a frame circuit C exists. Let
S ′ be the component of S ∪ {e} that contains e.
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If S ′ is contained in one of the sets bcl Si, then C exists by the definition of
balance-closure.

Assume  consists of one or two components of
S:V0(S). Every such component is unbalanced, so S ′ is unbalanced and e is not a
partial balancing edge of it. By Proposition 2.12, e is contained in a frame circuit
C ⊆ S ∪ {e}.

Sufficiency. Assuming a circuit C exists, we want to prove that e ∈ clos S.

If C is balanced, e ∈ bcl S ⊆ clos S.

If C is unbalanced, the component S ′ of S ∪ {e} that contains e is unbalanced.
By Proposition 2.12, e is not a partial balancing edge of S ∪ {e}; therefore S ′ \ e
has only unbalanced components. It follows that , so

A consequence is that Lat Σ is a geometric lattice; but that is too much
matroid theory for here.

2.6. Oriented signed graphs = bidirected graphs.

Bidirected graphs were introduced by Edmonds and first published in a paper on
matching theory, Edmonds and Johnson (1970a). Later, Zaslavsky (1991b) found
that they are oriented signed graphs.

A bidirected graph is a graph in which each end of each edge has an independent
direction. Thus, an oriented signed graph is a bidirected graph. Formally, a bidirected
graph B (read ‘Beta’) is a pair (Γ, τ) where Γ is a graph and τ is a function from
edge ends to {+,−}. If e has endpoints v,w and we write (v, e) for the end of edge
e at vertex v, then τ (v, e) = + if the end is directed towards v and = − if the end
is directed away from v. (The two directions on e agree when τ(v, e) = −τ(w, e),
which may at first sight seem peculiar.)

An orientation of an ordinary graph gives a direction to each edge. An
orientation of a signed graph gives a direction to each end of each edge. If e is
positive, the directions at the two ends of e must agree in pointing from one
endpoint to the other. If e is negative, the directions at the two ends of e must
disagree; that is, they both point towards the middle of e (an introverted edge) or
both away from the middle (an extraverted edge).
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A bidirected graph has an edge signature:

That is, if the directions at the two ends agree, the edge is positive; if they
disagree, the edge is negative. Thus, bidirected graphs and oriented signed graphs
are exactly the same thing; only the name is different.

Here is an example in which all negative edges are extraverted:

We write |B| for the underlying graph of B and ΣB for the signed graph
(|B|, σB). B is switched by the rule Bζ := (|B|, τζ) where

Lemma 2.18. Σ
B
 and  are switching equivalent; in fact,  = (Σ

B
)ζ.

Proof. Let e have endpoints v,w. Then

  

In contrast to switching of a signed graph, ; indeed, 

Acyclic orientations.

In an orientation τ of a signed graph, a vertex v is a source if τ(v, e) = + for every
edge end (v, e) at v; in other words, all edges incident with v point into it. It is a
sink if τ(v, e) = − for every edge end at v; i.e., all edges at v point away from it.
An orientation τ of Σ is called acyclic if for every frame circuit C ⊆ Σ, the oriented
subgraph (Σ|C, ) has a source or a sink, where  denotes the restriction to the
edge ends (v, e) in Σ|C.
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Digraphs.

The two arrows that point in a consistent direction along a positive edge can be
just as well represented by a single arrow. Thus, an oriented all-positive signed
graph−or we may call it an all-positive bidirected graph−is a directed graph; only
the name has changed. It follows that digraphs fall under the topic of bidirected
graphs. I have an impression that much of digraph theory does not readily generalize
to bidirected graphs, but it may be that it has merely not yet been tried.

3. GEOMETRY AND MATRICES

In this section we write the vertex set as . F denotes any
field. The most important field here will be R, the real number field.

3.1. Vectors for edges.

We have a signed graph Σ of order n. For each edge e there is a vector
x(e) ∈ Fn, whose definition is, for the four types of edge:

Note that the vector of a positive loop is 0. These vectors are well defined
only up to sign, i.e., the negative of x(e) is another possible choice of x(e). We
make an arbitrary choice x(e) for each edge e, which does not affect the linear
dependence properties.
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For a set S ⊆ E, define x(S) := {x(e) : e ∈ S}.

Theorem 3.1. Let S be an edge set in Σ and consider the corresponding vector
set x(S) in the vector space Fn over a field F.

(a) When char  is linearly dependent if and only if S contains a
frame circuit.

(b) When char  is linearly dependent if and only if S contains a
circle or a loose edge.

The theorem is a restatement of Zaslavsky (1982a), Theorem 8B.1. The
proof, which we omit, is neither very short nor very long.

Corollary 3.2. If char , the minimal linearly dependent subsets of x(E) are
the sets x(C) where C is a frame circuit in Σ.

Define S ⊆ E(Σ) to be independent if the vectors in x(S) are linearly independent
(and distinct from each other) over a field whose characteristic is not 2.

Corollary 3.3. A set S ⊆ E(Σ) is independent if and only if it does not contain
a frame circuit.

Independent sets are the signed-graphic generalization of forests. Corollary
3.3 implies that a set in a balanced signed graph is independent if and only if it is
a forest. Zaslavsky (1982a), Theorem 5.1(c) has a direct description of independent
sets in general. The vector subspace generated by a set X ⊆ Fn is denoted by 〈X〉.
We write

When partially ordered by set inclusion,  is a lattice.

Corollary 3.4. Assume that char . For S ⊆ E(Σ), x(E) ∩ 〈x(S)〉 =
x(clos S). Thus,

(a) LF  and

(b) S is independent if and only if it is not in the closure of any proper subset
of itself.

The rank of S ⊆ E is defined to be

rk S := n − b(S).

The rank of Σ is rk Σ := rk E = n − b(Σ).
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Theorem 3.5. Assume that char . Then 

Proof: The proof is simplest when expressed in terms of the frame matroid
(Section 3.3), so I omit it; see Zaslavsky (1982a), Theorem 8B.1 and following
remarks. The essence of the proof is using Corollary 3.3 to compare the minimum
number of edges required to generate S by closure in Σ to the minimum number of
vectors x(e) required to generate 〈x(S)〉.  

Why the signs?

It is natural to wonder, at first sight, why the signs in a link vector come out as
they do, opposite for a positive edge and similar for a negative edge rather than
the reverse. There are several reasons. The strongest is the correlation between
the linear dependencies of edge vectors and frame circuits in Σ as stated in Theorem
3.1. If we were to adopt the opposite correspondence of edge sign with vector signs
so that a positive edge had two entries with the same sign, we would be forced to
define frame circuits in terms of circle signs in −Σ instead of Σ. That would be
unnecessarily complicated.

Another justification for our sign convention is in the equations of edge
hyperplanes; see Section 3.5.

Orientation.

Choosing x(e) or −x(e) corresponds to choosing an orientation of Σ. Orient Σ as
B = (|Σ,τ), and define

(3.1)

 Conversely, if we choose x(e) first, there is a unique τ that
orients Σ and satisfies (3.1), with the exception that the orientation of a positive
loop is arbitrary.

3.2. The incidence matrix.

The incidence matrix   (read ‘Eta of Sigma’) is a V × E matrix

(thus, it has n rows and m columns where m := |E |) in which the column
corresponding to edge e is the column vector x(e); that is,
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This matrix of a signed graph has a role in more than geometry; it underlies
both the Laplacian matrix and the line graph of Σ.

A small example:

Theorem 3.6. Over a field whose characteristic is not 2, the rank of H(Σ) is
rkΣ = n−b(Σ) and, for S ⊆ E, the rank of H(Σ|S) is rk S = n − b(S).

Proof: The column rank is the dimension of the span of the columns
corresponding to S, which is the span of x(S). Apply Theorem 3.5.  

3.3. Frame matroid.

The frame matroid G(Σ) is an abstract way of describing all the previous vector-
like characteristics of a signed graph: dependent edge sets, minimal dependencies,
rank, closure, and closed sets. See Zaslavsky (1982a), Section 5, for details. For
these aspects of matroid theory consult the early chapters of the excellent text by
Oxley [3].

I mention matroids here because in the frame matroid G(Σ) we have a notion
of independent edge set which expresses abstractly, on an equal footing, both the
independence of representation vectors and the corresponding independence of a
set of edges whose columns in H(Σ) are linearly independent. Hence, theorems of
matroid theory can be useful in signed-graphic geometry; but that is a road we do
not take here.

3.4. The adjacency and Laplacian (Kirchhoff) matrices.

The adjacency matrix is  defined by

where  is the number of half edges at v and  is the number of loops at v with
sign ε, and for i ≠ j,
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 := (the number of positive edges )−(the number of negative edges ).

An important fact about the adjacency matrix is that it does not change if a
parallel pair of edges, one positive and one negative, is deleted from Σ (this is
cancellation of a negative digon), or if a loose edge or positive loop is deleted. A
signed link graph is reduced if it has no such parallel pairs, and no positive loops or

loose edges. Up to isomorphism there is a unique reduced signed graph  with the
same adjacency matrix as Σ.

The Laplacian matrix or Kirchhoff matrix of Σ is L(Σ) := D(|Σ|) − A(Σ),
where D(|Σ|), called the degree matrix, is the diagonal matrix whose diagonal
element  (Recall that a loop counts twice in the degree of an unsigned
graph.) I mention the Laplacian here because it gives us a second application of
the incidence matrix.

We think of these as matrices over the complex numbers so we can talk about
their eigenvalues and eigenvectors.

Some examples:

 • A(−Σ) = −A(Σ).

 • A(+Γ) = A(Γ), the adjacency matrix of Γ.

 • A(−Γ) = −A(Γ).

• L(+Γ) = L(Γ) := D(Γ) − A(Γ), the Laplacian (or Kirchhoff) matrix of Γ.

• L(−Γ) = Q(Γ) := D(Γ) + A(Γ), the so-called ‘signless Laplacian matrix’
(or ‘Q-matrix’) of Γ, which has recently been studied intensively; in signed
graph theory it is simply another Laplacian matrix, though an especially
important one.

A particular example is Σ4 from Section 3.2:

Proposition 3.7. For a signed graph Σ, L(Σ) = H(Σ)H(Σ)T.
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The proof is by matrix multiplication—the same straightforward calculation
as with ordinary graphs.

The eigenvalues of A(Σ) are known as the eigenvalues of Σ. Those of L(Σ)
are called the Laplacian eigenvalues of Σ. Every graph in the switching class [Σ]
has the same spectrum.

Theorem 3.8. The eigenvalues of A(Σ) are real.

The eigenvalues of L(Σ) are real and non-negative.

The eigenvalues of each matrix are unchanged by switching Σ.

Proof: As with ordinary graphs, A(Σ) is symmetric and L(Σ) = H(Σ)H(Σ)T

is positive semidefinite.

Switching Σ by ζ has the effect on the adjacency and Laplacian matrices of
conjugating them by a diagonal matrix D(ζ) whose diagonal entries are the values
ζ(vi); i.e.,

The conjugation does not alter the eigenvalues.

A use for the Laplacian.

Theorem 3.9 (Matrix-Tree Theorem for Signed Graphs). Let bi := the
number of sets of n independent edges in Σ that contain exactly i circles. Then

det 

The proof uses the Cauchy-Binet Theorem in the same way as it is used to
prove the Matrix-Tree Theorem for ordinary graphs. Note that the i circles must
all be negative for the edge set to be independent. Chaiken (1982a) has a
generalization to signed digraphs and to arbitrary minors of the Laplacian matrix.

3.5. Arrangements of hyperplanes.

An arrangement of hyperplanes in  is a finite set
of hyperplanes. A region of  is a connected component of the complement,

 We write  := the number of regions. The intersection lattice is
the family  of all subspaces that are intersections of hyperplanes in , partially
ordered by reverse inclusion,  t ⊆ s. The characteristic polynomial of  is
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(3.2)

where 

Theorem 3.10 ([4, Theorem A]). 

3.5.1. The signed-graphic hyperplane arrangement.

A signed graph Σ, with edge set  gives rise to a hyperplane
arrangement

(By . I mean the dot product  In terms of the graph,

A positive link gives the equation  a negative one the equation
 and a negative loop the equation  = − , simplified here to  = 0. The

signs in the equations of edge hyperplanes agree with the edge signs; for that
reason I am inclined to think hyperplanes are more fundamental than the vectors
defined in Section 3.2.

(The equation 0 = 0 of a loose edge or  = −  of a positive loop has the
solution set Rn, which is not truly a hyperplane, but I allow it under the name
‘degenerate hyperplane’. If the arrangement contains the degenerate hyperplane,
it has no regions, because when the hyperplanes are removed from Rn, nothing
remains. For a few reasons we cannot avoid the degenerate hyperplane; the chief
is that it appears in the geometrical contraction-deletion process corresponding to
that used to evaluate chromatic polynomials; see Theorem 4.1.)
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Lemma 3.11. Let  be the subset of  that corresponds to the
edge set 

Proof: Apply vector space duality to Theorem 3.5.

Theorem 3.12. , and Lat Σ are all isomorphic.

Proof: The isomorphism between  and  is standard vector-
space duality. The isomorphism  is in Corollary 3.4.

3.5.2. Acyclic orientations reappear.

Now recall acyclic orientations from Section 2.6. A notable fact is that the regions
of  are in bijective correspondence with the acyclic orientations of Σ. For an
orientation τ define

 for every edge e = .

Theorem 3.13.

(a) R(τ) is nonempty  τ is acyclic.

(b) Every region is an R(τ) for some acyclic τ.

Zaslavsky (1991b) gives two proofs. They are not short.

4. COLORING

We color a signed graph from a color set

or a zero-free color set

A k-coloration (or k-coloring) of Σ is a function  A coloration is
zero free if it does not use the color 0. Coloring of signed graphs comes from
Zaslavsky (1982b, 1982c).

A coloration γ is proper if it satisfies all the properties
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and there are no loose edges. Note that these conditions for a proper coloration
are opposite to the equations of the hyperplanes hk. Also note that if Σ has a
positive loop or loose edge, there are no proper colorations at all.

4.1. Chromatic polynomials.

A signed graph has two chromatic polynomials. For an integer k ≥  0, define

and

The polynomials are identically zero if and only if Σ has a positive loop or a loose
edge.

One may wonder why the variables are 2k + 1 and 2k and not k; there are
several reasons, amongst which Theorem 4.2 and Lemma 4.3 and the geometrical
analysis mentioned in Section 4.1.4 are especially important.

4.1.1. Basic properties.

The chromatic polynomials have fundamental properties in common with ordinary
graphs.

Theorem 4.1. The chromatic polynomials have the properties of

(1) Unitarity:

(2) Switching Invariance: If   then

(3) Multiplicativity: If Σ is the disjoint union of Σ1 and Σ2, then

(4) Deletion-Contraction: If e is a link, a positive loop, or a loose edge, then
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and

Outline of Proof. The hard part is the deletion-contraction property. The proof is
similar to the usual proof for ordinary graphs by counting proper colorations of
Σ \e.

If e is a link, first switch so it is positive. (Switching modifies a coloration by
negating the color of every switched vertex. The switched coloration is proper in
the switched graph if and only if the original coloration was proper in the original
graph.) Then a proper coloration of Σ \e gives unequal colors to the endpoints of
e and is a proper coloration of Σ, or it gives the same color to the endpoints and it
corresponds to a proper coloration of Σ \e. If e is a half edge or a negative loop,
there are two cases depending on whether the endpoint gets a nonzero color or is
colored 0.

A complete proof is in Zaslavsky (1982b).

These properties make it possible to prove explicit formulas which demonstrate
that the chromatic polynomials are indeed polynomials.

Theorem 4.2.  is a polynomial function of  specifically,

(4.1)

Also,  is a polynomial function of  Specifically,

(4.2)

Proof: Apply Theorem 4.1 and induction on |E| and n.

Therefore, we can extend the range of λ to all of R. In particular, we can
evaluate 

4.1.2. A geometrical application of the chromatic polynomial.

This lets us draw an important connection between geometry and coloring of
a signed graph.

Lemma 4.3. 
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Proof: Compare the summation expressions, (4.1) and (3.2), for the two
polynomials, and note that by Lemma 3.11  corresponds to
the edge set S.

Theorem 4.4. The number of acyclic orientations of Σ and the number of
regions of  are both equal to .

4.1.3. Computational methods.

To compute the chromatic polynomial it is often easiest to get several zero-
free polynomials first and use

Theorem 4.5. (Zero-Free Expansion Identity). The chromatic and zero-free
chromatic polynomials are related by

Proof: Let λ = 2k+1. For each proper k-coloration γ there is a set

 which must be stable. The restricted coloration  is a
zero-free proper k-coloration of Σ \W. This construction is reversible.

Example 4.6. A signed complete graph is  In the zero-free expansion
the stable vertex sets are ∅ and also {v} for each v ∈ V . Thus,

4.1.4. A geometry of coloring.

Beck and Zaslavsky (2006a) explain why there are two chromatic polynomials of
a signed graph when one is enough for ordinary graphs. They take a geometrical
approach that views colorations in connection with the hyperplane arrangement

 Colorations correspond to certain half-integral points in Rn and proper
colorations correspond to points that are not in a translation of  The two
chromatic polynomials are then a natural consequence of Ehrhart’s theory of
counting lattice points in polytopes (for which see [1], for instance).

4.2. Chromatic numbers.

The chromatic number of Σ is
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and the zero-free chromatic number is

:

Thus, 

Almost any question about chromatic numbers of signed graphs is open. The
little I know about the graphs with a given value of a chromatic number is in
Zaslavsky (1984a), where I studied complete signed graphs with largest or smallest
zero-free chromatic number. Zaslavsky (1987b) also concerns chromatic number,
disguised as a signed generalization of graph biparticity called ‘balanced
decomposition number’, as the balanced decomposition number of Σ equals

log
2
 

5. A CATALOG OF EXAMPLES

We apply the theory to some of the simpler ways one can derive a signed graph
from an ordinary graph. This gives us several general examples.

The chromatic polynomial and the chromatic number of Γ are, respectively,
 and  For the geometrical aspects we need the standard basis vectors of

Rn:

5.1. Full signed graphs.

In this example

Σ  is a signed graph with no half or loose edges or negative loops,

Σ• is Σ with a half edge at every vertex, and

Σ° is Σ with a negative loop at every vertex.

Whether a half edge or negative loop is added makes no almost difference, because
each is an unbalanced edge. Write f

i
 for the unbalanced edge added to v

i
.

• Balance : The balanced subgraphs in Σ• are the same as those of Σ.

• Closed sets : An edge set in Σ• is closed if and only if it consists of the
induced edge set E(Σ•):W together with a balanced, closed subset of 
for some vertex set W ⊆ V. Σ° is similar.
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Different choices of W give different edge sets (which may not be the case
when the signed graph is not full).

• Vectors:

 adds to  the unit basis vectors bi.

 adds the vectors 2bi instead. (That is the only difference we see in
the two kinds of full graph.)

• Incidence matrix : The columns are the vectors x(E). Thus,  is H(Σ)
with the columns of an identity matrix In adjoined.  is H(Σ) with the
columns of 2I

n
 adjoined.

• Hyperplane arrangement :  =  and both equal  together with
all the coordinate hyperplanes xi = 0.

• Chromatic polynomials:

 by Theorem 4.5, since the only stable set is
W = ∅.

• Chromatic numbers:  since the unbalanced edges prevent
the use of color 0.

5.2. All-positive signed graphs.

In this example we assume Γ is a graph with no half or loose edges. +Γ has almost
exactly the same properties as its underlying graph.

• Balance: Every subgraph is balanced. b(S) = c(S) for all S ⊆ E.

• Closed sets : S is closed  every edge whose endpoints are connected by S
is in S.

Closure in +Γ is identical to the usual closure in Γ, and the closed sets in +Γ
are the same as in Γ.

• Vectors: If e has endpoints 

When  if one takes both signs the set of vectors is the classical root
system
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Thus, x(E) for any graph is a subset of 

• Incidence matrix : H(+Γ) is the ‘oriented incidence matrix’ of Γ.

• Hyperplane arrangement: If ek has endpoints  has equation 

All hyperplanes  contain the line 

Take  the hyperplane arrangement dual to A .

• Chromatic polynomials:  the chromatic polynomial
of Γ.

• Chromatic numbers: 

5.3. All-positive, full signed graphs.

The signed graph  is closely related to  which consists of Γ and an extra
vertex  adjacent to all of V by edges  There is a natural bijection α : E(+Γ•)
→ E(Γ + ) by α(e) := e if e ∈ E(Γ) and 

• Balance: S is balanced if and only if α(S) does not contain any edges at 

• Closed sets: S is closed  α(S) is closed in 

• Chromatic polynomials: 

• Chromatic numbers: 

5.4. All-negative signed graphs.

Again assume Γ is a graph with no unbalanced edges. −Γ is quite interesting.

• Balance:

A subgraph is balanced  it is bipartite.

 the number of bipartite components of S (including isolated vertices).

• Closed sets: S is closed if and only if the union of its non-bipartite components
is an induced subgraph.

• Vectors: If e has endpoints  then x(e) = bi + bj (or its negative).

• Incidence matrix : H(−Γ) is the ‘unoriented incidence matrix’ of Γ.

• Hyperplane arrangement:
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 has endpoints 

• Chromatic polynomials:

 (Zaslavsky (1982c), Theorem 5.2).

• Chromatic numbers:

 = the largest size of a matching in the complement of Γ (based on
Zaslavsky (1982c), page 299).

 has not yet seemed interesting.

5.5. Signed expansion graphs.

Now assume we have a simple graph Γ. The properties of ±Γ and ±Γ• are closely
related to those of Γ.

• Balance: Each set S ⊆ E(Γ) gives 2n−c(S) balanced subsets of E(±Γ) by
switching +S.

• Closed sets: Each closed set S ⊆ E(Γ) gives 2n−c(S) balanced closed subsets of
E(±Γ) by switching +S.

Each unstable (i.e., non-independent) vertex subset W ⊆ V gives 2n−|W|−c(S)

unbalanced closed sets for each closed set S in Γ\W by taking E(±Γ):W ∪ S′
where S′ is any switching of +S in Γ\W.

• Hyperplane arrangement: The numbers of regions are

and

• Chromatic polynomials:
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and

• Chromatic numbers:

 because, if Γ is properly colored by the set

 the colors i can be transferred directly to colors +i (or −i if

desired), giving a proper coloration of ±Γ.

 because the color 0 can be substituted for the color .

5.6. Complete signed expansion graphs.

The signed expansions  called the complete signed link graph, and  (which
we now define to have any choice of a half edge or negative loop  at each
vertex), called the complete signed graph, have elegantly simple properties.

• Closed sets: For the complete signed graph the lattice of closed sets, Lat( ),
is isomorphic to the lattice of signed partial partitions of V (Dowling (1973b)).

• Vectors:

where we take either + or − for each vector, and

if every  is a half edge (but take  instead for an  that is a negative loop)
where again we take either + or − for each vector.

If we take both signs for each vector we get the classical root systems

from  (where we take both + and − signs), and

from  (the former if all  are half edges, the latter if they are negative loops).

• Hyperplane arrangement:

the duals of  The numbers of regions are  respectively.
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• Chromatic polynomials:

• Chromatic numbers:

6. LINE GRAPHS

Several definitions exist for a line graph of a signed graph, which in different ways
sign the edges of the line graph of the underlying graph. Two seem (to me) well
motivated. They are the ×-line signed graph of Mukti Acharya (1982a, 2009a),
which closely follows the combinatorial spirit of a line graph, and my definition
based on the matrix properties of line graphs (Zaslavsky 1984c, 2010b). It is that
last which connects to geometry.

In this section all our graphs are link graphs, but not necessarily simple.
(Allowing loops and half edges adds much complexity.)

The line graph of an unsigned graph Γ = (V, E) is the graph Λ(Γ) of adjacency
of edges in Γ. Its vertices are the edges of Γ, and two edges are adjacent if they
have a common endpoint. When e, f ∈ E(Γ) are parallel, in Λ(Γ) they are doubly
adjacent.
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Construction of the line graph of a signed graph Σ has to be approached
through an orientation of Σ. Thus, we begin with line graphs of bidirected graphs,
which are identical (except for the name) with line graphs of oriented signed
graphs.

6.1. Bidirected line graphs and switching classes.

6.1.1. Bidirected graphs.

The line graph of a bidirected graph B is a bidirection of the line graph of |B|. We
write Λ(B) := (Λ(|B|), τΛ), where τΛ is the bidirection. To define τΛ(ef), where
ef ∈ E(Λ(|B|), let v be the vertex at which e, f are adjacent. Then we define

6.1.2. Signed graphs.

This definition implies that, given a signed graph Σ, to define a line graph we must
first orient Σ as B, then take the line graph Λ(B).

An oriented signed graph and its oriented line graph:

Different orientations of Σ give different bidirected line graphs Λ(B), which
may have different signed graphs ΣΛ(B). Indeed, reorienting an edge of a bidirected
graph corresponds to switching the corresponding vertex in its line graph. Switching
Σ itself has a more complicated effect.

Lemma 6.1. Any orientations of any two switchings of Σ have line graphs that
are switching equivalent.

Proof: We assume there are no parallel edges; the proof is not much different
if there are any.

Let  be a switching of Σ and let τ and  be orientation functions of Σ
and  , respectively, giving bidirected graphs B and  on the underlying graph
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Γ := |Σ|. Then  for each
edge e with V(e) = {v,w}.

Let  they have the same underlying graph Λ(Γ).
Suppose e, f are adjacent at v. In the line graph, τΛ(e, ef) = τ(v, e). Thus,

and, similarly, 

Let  be a closed walk in Λ. Thus, 
have a common vertex  in Γ. Then

 (6.1)

Now there are two cases.

If all 

Otherwise, not all  are the same vertex. A consecutive pair  may be
the same or different. If they are the same, the factor 
and also W ′ :=  is a walk in Λ. Then  In this
way we can reduce W by eliminating consecutive equal vertices while negating the
sign of the walk. Similarly, if  we can eliminate  from the reduced
walk. Let  be the walk in Λ that results after all these reductions
and let  be the common vertex of   has positive length and  so

 is a closed walk and it has sign  Furthermore, 
for 0 < i < m. Define  Now  is a
walk in Γ. Because  and, by the construction of ,  it must be
true that  Therefore,  is a closed walk of length m
in Γ. Now we evaluate  From (6.1),
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We conclude that

(6.2)

when not all the vertices vi are the same vertex. When all vi are the same, we can
take W0 to be a trivial walk (length m = 0) and once again we have the same
formula (6.2).

We prove the lemma by observing that  and hence also  are not
affected by the choice of orientation and are not altered by switching Σ. Therefore
Λ and Λ′ have the same positive circles. By Proposition 2.5(ii), Λ and Λ′ are
switching equivalent.                                                                              

The line graph of a signed graph Σ cannot be a signed graph, because reorienting
an edge switches the corresponding vertex in the line graph. Therefore, Λ(Σ) must
be a switching class of signatures of Λ(|Σ|).

Theorem 6.2. The line graph of a switching class of signed graphs is a well
defined switching class of signed graphs.

Proof: The theorem means that if two signed graphs are switching equivalent,
and if each one is oriented arbitrarily, the signed graphs of the line graphs of the
two oriented signed graphs are switching equivalent. That is Lemma 6.1.         

In view of this theorem we may write

Λ[Σ] := the switching class of line graphs of the signed graphs in the switching
class [Σ].

I sometimes refer to a line graph of Σ, meaning any signed graph in the
switching class Λ[Σ].

6.1.3. All-negative signatures and their line graphs.

There is one circumstance in which there is a well defined signed line graph: an all-
negative signature.
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Proposition 6.3. If Γ is a link graph, then .

Proof: Orient −Γ so every edge is extraverted; that is, τ(v, e) ≡ +. Then in
Λ(−Γ, τ), every edge is extraverted; thus, the signed graph underlying Λ(−Γ, τ)
has all negative edges.

Consequently, we can say that

as in the following example:

A line graph of an all-negative signed graph, oriented with extraverted edges:

6.1.4. All-positive signatures and their line graphs.

On the other hand, if Σ is all positive, its line graph cannot usually be made to be
all positive or all negative. Thus, all-negative signed graphs are special. Indeed, in
connection with line graphs the best way to think of an ordinary graph Γ is as −Γ,
not +Γ as in most other respects.

Nonetheless there is value in looking into all-positive graphs, because their
orientations are digraphs. The Harary−Norman line graph of a digraph D [2] is
precisely the positive part of the line graph of D, if D is treated as an oriented all-
positive signed graph:   detects directed paths of length
two in D but ignores head-to-head and tail-to-tail adjacencies. Λ(+D) records all
adjacencies. (Previous attempts to encompass all edge adjacencies were handicapped
by not having bidirected edges in the line graph.)

6.2. Adjacency matrix and eigenvalues.

With line-graph matrices we come to the third reason the incidence matrix is
important. The adjacency matrix of the line graph of an ordinary graph is computed
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directly from the incidence matrix of the graph, and the same holds true for signed
graphs.

An example, using a particular choice of orientation of Σ
4
:

Theorem 6.4. For a bidirected link graph Σ, 

Proof: The (j, j) entry of  is the sum over all vertices of 

therefore it equals 2.

The (j, k) entry of  for j ≠ k is the sum over all vertices of 
By Equation (3.1) this is 0 if  are not adjacent, and if they are adjacent at

 then it is 

Thus, the off-diagonal entries of  are those of  and the
diagonal entries all equal 2.

The orientation of Σ used to calculate Λ(Σ) can affect the values in 
as the choice of orientation switches the line graph, and that corresponds to
conjugating  by a diagonal matrix with ±1’s on the diagonal (see the
proof of Theorem 3.8). However, the eigenvalues of  are independent of
the choice of orientation.

We can interpret Theorem 6.4 as saying that the inner product of representation
vectors  equals 2 if j = k and  A matrix of inner
products is known as a Gram matrix ; thus,  is a Gram matrix of
vectors with length 

Corollary 6.5. All the eigenvalues of a line graph of a signed graph are ≤ 2.

Proof: Rewrite Proposition 6.4 as  A matrix of
the form  has non-negative real eigenvalues.
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In unsigned graph theory the eigenvalues of a line graph are ≥ −2. Corollary
6.5 is the generalisation to signed graphs, because in what concerns line graphs, an
unsigned graph should be taken as all negative, and the eigenvalues of −Σ are the
negatives of those of Σ (since A(−Σ) = −A(Σ)).

6.3. Reduced line graphs and induced non-subgraphs.

If Σ has a negative digon, that is, a pair of parallel edges e, f, one positive and the
other negative, then in Λ(Σ) there is a double edge ef that forms a negative digon.
Therefore, the (e, f) entry of A(Λ(Σ)) equals 0 and, correspondingly, in the reduced

line graph  the vertices e and f are not adjacent. My conclusion: In what
regards adjacency matrices and eigenvalues, one should look at reduced line graphs
rather than unreduced line graphs; but look at the (reduced) line graphs of both
unreduced and reduced signed graphs!

A well known theorem of Beineke and Gupta from around 1970 is that a
simple graph is a line graph if and only if it has no induced subgraph that is one of
nine particular graphs, all of order at most 6. Chawathe and Vijayakumar (1990a)
found the analogous 49 excluded induced switching classes, all of order at most 6,
for signed simple graphs that are reduced line graphs of signed graphs. (I believe
the value 6 for the largest order is due to automorphism properties of the classical
root systems.)

7. ANGLE REPRESENTATIONS

In this section we represent a signed graph by mapping the vertices, instead of the
edges, to vectors. In such ‘vertex representations’ it is best to assume all underlying
graphs are simple. For a non-zero vector y, the unit vector in the same direction is

An angle representation of Σ is a mapping  for some dimension d,
such that
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for a positive constant ν. Equivalently, the representing vectors ρ(v), ρ(w) of
vertices v, w make an angle

When  we call ρ an angle representation in X if Im ρ ⊆  X. As the
length of ρ(v) has no role in the definition, one still has an angle representation
after multiplying any ρ(v) by any positive real number. Thus, for instance, one
may assume all the representing vectors have a particular desired length such as 1
or 2.

Switching v in Σ corresponds to replacing ρ(v) by −ρ(v) in the angle
representation.

A generalization of the Gram-matrix (that is, dot-product) interpretation of
Theorem 6.4 is a Gramian angle representation of Σ. That is an angle representation
such that

for every pair of distinct vertices. It follows by comparing the two definitions that
||ρ(v)|| . ||ρ(w)|| = ν for adjacent vertices.

An anti-Gramian angle representation of Σ is a Gramian angle representation
of −Σ. Vijayakumar uses anti-Gramian representations (see Vijayakumar (1987a)
et al.). Example 7.3 will show why one wants them.

Proposition 7.1. In a Gramian angle representation ρ of a connected signed
simple graph Σ:

(a) If Σ is not bipartite, all representing vectors ρ(v) have the same length

(b) If Σ is bipartite with color classes V1 and V2, then ||ρ(v)|| = α if v ∈ V1

and ||ρ(v)|| = ν/α if v ∈ V2, where α > 0. Then  defined by 
is an angle representation in which all representing vectors have the same
length.

Idea of Proof: Apply the equation ||ρ(v)|| ||ρ(w)|| = ν for an edge vw,
propagated around an odd circle if there is one, and an even circle if there is not.
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In a normalized Gramian angle representation all vectors have the same
length. Then the Gram matrix of the representing vectors is A(Σ)+νI .
By Proposition 7.1 any Gramian angle representation becomes normalized if we
replace  Henceforth we assume all Gramian representations are
normalized.

Theorem 7.2. A signed simple graph Σ has a Gramian (or, anti-Gramian)
angle representation with constant ν if and only if the eigenvalues of Σ are ≥ −ν
(respectively, ≤ ν).

Proof: This proof is based on the treatment of equiangular lines by Seidel et
al. (see, e.g., Seidel (1976a, 1995a) or Godsil and Royle (2001a)).

We consider a normalized Gramian angle representation. The Gram matrix
A(Σ) + νI has an eigenvalue  λ + ν for each eigenvalue λ of A(Σ). As a Gram
matrix has non-negative eigenvalues, every λ ≥ −ν.

Now assume Σ has eigenvalues ≥ −ν. The matrix A(Σ) + νI is positive
semidefinite and symmetric. It follows by matrix theory that A(Σ) + νI is the
Gram matrix of vectors   for all i, j. Then 
is a normalized Gramian angle representation of Σ with constant ν.

Example 7.3. The mapping  of Section 3.1, which gives a
vector representation of Σ, gives an anti-Gramian angle representation of 
We take  ρ := x, since V ( )) = E(Σ). The constant is ν = 2 and the angle is

θ = π/3. Every vector x(e) has the same length,  and the inner products are +1
if  = −, in which case the angle between x(e) and x(f) is π/3, and −1 if
σΛ(ef) = +, in which case the angle between x(e) and x(f ) is 2π/3. (The signs
reverse because the representation is anti-Gramian.)

The vectors x(e) are some of the vectors of the root system  mentioned in
Section 5.6. The image of the representation of  The treatment
of x as an angle representation of a reduced line signed graph is implicit in Cameron,
Goethals, Seidel, and Shult (1976a), but explicit line graphs of signed graphs only
came later, in Zaslavsky (1979a, 1984c, 2010b).

The root system  is defined by
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Theorem 7.4. An anti-Gramian angle representation of Σ with ν = 2 is a
vector representation of a reduced line graph (Σ), or else |V (Σ)| ≤ 184 and the
representation is in .

Proof: As Vijayakumar (1987a) observed, Cameron, Goethals, et al. (1976a)
implies that an anti-Gramian angle representation of Σ having ν = 2 is, after
choosing the appropriate coordinate system, either in  for some n > 0 or in .
If the representation is in , then there is a signed graph Σ′ with vertex set E(Σ)
whose vector representation  is the same as ρ, and it is easy to verify
that Σ′ is a reduced line graph of Σ.

If the representation is in , the order of Σ cannot be greater than the
number of pairs of opposite vectors in , which is 184 because | | = n(n − 1)
and the number of choices for (ε1,...,ε8) is 27.

Cameron, Goethals, et al. used Gramian angle representations of unsigned
graphs to classify the graphs Γ whose eigenvalues are ≥−2. They obtained the all-
positive and all-negative cases of the preceding theorem. (The all-positive case
corresponds, in our terminology, to a Gramian representation of −Γ, and the all-
negative case to a Gramian representation of +Γ, since the theorem concerns
anti-Gramian representations.) Then G.R. Vijayakumar and his collaborators
extended that work to anti-Gramian representations of signed graphs (without
line graphs; historically, therefore, there were two independent lines of development
treating essentially the same objects: that of line graphs by Zaslavsky and that of
angle representations by Vijayakumar et al.).

Corollary 7.5. A signed simple graph has all eigenvalues ≤ 2 if and only if it is
a reduced line graph of a signed graph or it has order ≤ 184 and has an anti-
Gramian angle representation in .

Proof of Sufficiency. Vectors in D
n
 or E

8
 have angles π/3, 2π/3, and π/2,

and any such system of vectors with norm  is contained in  or , therefore
an angle representation in  or  has ν = 2.

Thus, eigenvalues determine whether a signed graph is a line graph, with a
finite number of exceptions of explicitly bounded order! More precisely, the number
of signed simple graphs with all eigenvalues ≤ 2 that are not reduced line graphs
of signed graphs is finite and not too large (but not too small either).
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We conclude with a description of the crucial example that led to Cameron,
Goethals, Seidel, and Shult (1976a) and that also shows why signed graphs are
truly the natural domain for line graphs.

Example 7.6. Let Γ be a simple graph with  A cocktail party
graph CPm is K2m\M where M is a perfect matching. Hoffman (1977a) defined the

generalized line graph  as the disjoint union Λ(Γ)

 with additional edges from every vertex in  to every
 (It is the line graph Λ(Γ) if all  = 0.) Hoffman showed that a

generalized line graph has least eigenvalue  ≥−2, just like a line graph.

Hoffman’s eigenvalue theorem is an easy consequence of Corollary 7.5. We
deduce it by showing how  is a reduced line graph of a signed

graph. Let Γ( ) be Γ with  negative digons attached to  The other

vertex of each negative digon is a new vertex; thus, Γ( ) has order

n +  + ... +  and |E| + 2(  + ... + ) edges. Then −Γ( ) is −Γ
with the negative digons adjoined (since a negated negative digon is still a negative

digon), and  The eigenvalue property of
 follows immediately from Theorem 7.2.

Here is the construction of −Λ(C4; 1, 2, 0, 0) as the reduced signed
line graph (−C4(1, 2, 0, 0)). It begins with all negative edges extraverted in
−Λ(C4; 1, 2, 0, 0):
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