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A RING IN GRAPH THEORY

BY W. T. TUTTE

Received 10 April 1946

1. INTRODUCTION

We call a point set in a complex K a O-cell if it contains just one point of K, and a 1-cell
if it is an open arc. A set L of 0-ceils and 1-cells of K is called a linear graph on K if

(i) no two members of L intersect,
(ii) the union of all the members of L is K,
(hi) each end-point of a 1-cell of L is a 0-cell of L

and (iv) the number of 0-cells and l-cells of L is finite and not 0.
Clearly if L is a linear graph on K, then K is either a 0-complex or a 1-complex, and

L contains at least one 0-cell.
A 1-cell of L is called a loop if its two end-points coincide and a link otherwise.
We say that L is connected if K is connected. If not then the subset of L consisting

of the 0-cells and l-cells of L which are in a component K1 ofK constitute a component
of L. A component of a linear graph is itself a linear graph.

Let the numbers of 0-cells and l-cells of a linear graph L on a complex K be oco(L)
and a^L) respectively. Then if pt(L) = Pi(K) is the Betti number of dimension i of
K we have by elementary homology theory

oc1(L)-<xo(L)=p1(L)-pQ(L). (1)

LetZ^, L2 be linear graphs on KVK2 respectively. Then if there is a homoeomorphism
of Kx on to K2 which maps each z'-cell of Lx on to an i-cell of L2 (i = 0,1) we say that
Lx and L2 are isomorphic and write

L^L2. (2)

If L1 and L2 are two linear graphs whose complexes Kr and K2 do not meet, then
together they constitute a linear graph L on the union of K1 and K2. We call it the
product of Lx and L2 and write

L=LXL2. (3)

The set of all the 0-cells of a linear graph L, together with an arbitrary subset of the
1 -cells constitutes a linear graph S which we call a subgraph of L. We call S a subtree
of L ifpo(S) = 1 and p^S) = 0.

Let A be a link in a linear graph L on a complex K. By suppressing A we derive from
L a linear graph L'A on a complex K'A. By identifying all the points of the closure of
AinK and taking the resulting point as a 0-cell of the new linear graph we derive from
L a linear graph L"A on a complex K"A.

Now there exist single-valued functions W(L) on the set of all linear graphs to the
ring / of rational integers which obey the general laws

W(Ll)= W(L2) if L^L2 (4)

and W(L)= W(L'A)+W(LA), (5)
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where A is any link of L. Some of these functions also satisfy

W(L1Lt)=W(L1)W(Lt), (6)

whenever the product LXL2 exists.
We give here three examples; all three satisfy (4) and (5) and the last two satisfy (6).

Proofs of these statements will emerge later, but the reader may easily verify them
at once.

(I) W(L) is the number of subtrees of L. This function is connected with the theory
of Kirchhoff's Laws. A summary of its properties and an application of it to dissection
problems is given in a paper entitled ' The dissection of rectangles into squares' by
Brooks, Smith, Stone and Tutte (Duke Math. J. 7 (1940), 312-40). These authors call
it the complexity of L.

(II) (— \)a^ W(L) vanishes whenever L contains a loop, and is otherwise equal to
the number of single-valued functions on the set of 0-cells of L to some fixed set H of
a finite number n of elements such that for each 1-cell of L the two end-points are
associated with different elements of H.

Important papers dealing with such ' colourings of the 0-cells of L in n colours' are
'The coloring of graphs' by Hassler Whitney* (Ann. Math. 33 (1932), 688-718) and
'On colouring the nodes of a network' by R. L. Brooks (Proc. Cambridge Phil. 3oc.
37 (1941), 194-97).

(III) If we orient the 1-cells of L and adopt the convention that the boundary of
an oriented loop vanishes, we can define 1-cycles on L with coefficients in a fixed addi-
tive Abelian group 0 of finite order A. (— l)a<f-L)+ai<-L) W(L) is the number of such
1-cycles on L in which no 1-cell has for coefficient the zero element of G.

These examples suggest that a general theory of functions satisfying the laws (4)
and (5) should be constructed, and this paper represents an attempt to develop such
a theory. For this purpose it is convenient to have the following definitions.

A W-function (V-function) is a single-valued function on the set of all linear graphs
to an additive Abelian group G (commutative ring H) which satisfies equations (4)
and (5) (equations (4), (5) and (6)).

In the second section of this paper a ring R is defined such that each linear graph L'
is associated with a unique element f(L) of R, and it is shown that every W-function
to G (F-function toH) can be expressed in the form hf(L) where A is a homomorphism
of R considered as an additive group (considered as a ring) into the group G (ring H),
and that every such homomorphism is a JF-function to G (F-function to H).

In the third section a F-function Z(L) denned in terms of the subgraphs of L is
studied; it is used in the next section in the proof of the following theorem.

THEOREM. Let (xQ,x1}x2,...) be an infinite sequence of independent indeterminates
over the ring I of rational integers. Then R is isomorphic with the ring of all polynomials
over I in the xi having no constant term.

* The px(L) of this paper is Whitney's ' nullity', and po(L) is Whitney's P. The ' components'
in this paper are Whitney's ' pieces': he uses the word ' component' with a different meaning.
A footnote to Whitney's paper, dealing with some work of R. M. Forster, is particularly inter-
esting with respect to the subject of the present paper.
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Further there is a particular isomorphism in which the element of R corresponding to
xr is the element associated with a linear graph having just one O-cell and just r 1-cells.

In the fifth section those W- and F-functions which are topological invariants of the
complexes K are considered, and in the sixth section a particular F-function is applied
to some colouring problems.

In the seventh section those 1-complexes K which admit of a simplicial dissection
in which each O-simplex is an end-point of not less than two and not more than three
1-simplexes are studied. A class of topologically invariant functions of these 1-com-
plexes, one member of which is associated with a well-known colouring problem, is
investigated, and it is shown that each of these functions has a unique extension as a
topologically invariant TF-function to all linear graphs.

2. THE RING R

From the definitions of L'A and L"A it is evident that

ao(L) = <xo(L'A) = ao{LA) + l (7)
and OLX{L) = ax{L"A) +1 = a^L'J + 1. (8)

We say that the link A is an isthmus if its suppression increases the number of com-
ponents of a linear graph. Evidently

P0(L)=p0(LA)=p0(L'A) or po(L'A)-l, (9)
according as A is not or is an isthmus. Hence by (1)

Pl(L) = Pl(LA) = Pl(L'A) or Pl(L'A) + l, (10)
according as A is or is not an isthmus.

We call the class of all linear graphs isomorphic with L the isomorphism class L*
of L. We also use clarendon type for isomorphism classes.

If Lx and L2 are any two isomorphism classes not necessarily distinct we can find
Lx in Lx and L2 in La such that the product Lx L2 exists. All products formed in this
way from Lr and L2 are clearly isomorphic. We call their isomorphism class L the
product of L-J and L2 and write L = L L . (11)

A graphic form is a linear form in the isomorphism classes L with integer coefficients
of which only a finite number may be non-zero. We do not distinguish between an
isomorphism class L and the graphic form in which the coefficient of L is unity and all
the other coefficients are zero.

We define addition and multiplication for graphic forms by

Li (12)

and (2 A.L,) (2>,L,.) = £ (Af /ty) L ^ . , (13)
i 3 i,i

where the Lt- are isomorphism classes and the Â  are rational integers.
With these definitions the graphic forms are the elements of a commutative ring B.

For the commutative, associative and distributive laws are evidently satisfied; and
if X = 2 Â  ht and Y = 2 At Lf are any two graphic forms there is a unique graphic form

= 2 (A i - /O L i s u c h t h a t Y + Z = X. We write Z = X - Y .
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If X = £ A ^ is any graphic form and A an integer, we denote by AX the graphic

form 2 AAfL .̂ We also denote by O the graphic form whose coefficients are all zero.

If A is a link in a linear graph L we say that the graphic form L* — (L'A)* — (L'A)*
is a W-fortn. Let W denote the set of all linear combinations of a finite number of
PF-forms taken with integer coefficients. Then W is a modul of B, for with X and Y
it contains also X—Y.

Now if Lo is any linear graph such that the product L0L exists we have

(L0L)'A = L0L'A and (L0L)A = L0LA.

Therefore if X is any TF-form and L any isomorphism class, then LX is also a TF-form.
Hence by (12) and (13) for any Ye IF and any ZeB, we have YZe W. That is, W is
an ideal of the commutative ring B. We denote the difference ring B — W by R.

The elements of R are the cosets mod. W in B. If we denote the coset of X mod. W
by [X], addition and multiplication in R satisfy

[X] + [Y] = [X + Y], (14)

[X][Y] = [XY]. (15)

THEOREM I. A single-valued function W(L) on the set of all linear graphs L to an
additive Abelian group G (commutative ring H) is a W-function (V-function) if and only
if it is of the form h[L*] where h is a homomorphism of the additive group R (ring B)
into G (H).

Now the functions W(L) which satisfy (4) depend only on the isomorphism classes.
For such functions we write 1F(L) = W(L) where L is the isomorphism class of the
linear graph L. TF(L) can now be extended to all graphic forms by writing

Wr(SAiLi) = SAiTT(Lf). (16)
i i

If W(L) satisfies (6) we have also TF(L1L2) = F^Lj) FF(L2) for any two isomorphism
classes Lx and L2, and therefore, by (13) and (16),

W(X1X2) = W(XJ W(X2), (17)

where Xx and X2 are any two graphic forms.
By (16) and (17) any single-valued function W(L) satisfying equation (4) (equations

(4) and (6)) is of the form hQL* where h0 is a homomorphism of B considered as an
additive group (considered as a ring) into G (H); and conversely it is evident that if
h0 is any such homomorphism, the function h0L* satisfies equation (4) (equations
(4) and (6)).

W(L) then satisfies (5) if and only if h0 maps all TF-forms and therefore all elements
of W on to the zero element of G (H). This is equivalent to the condition that \L*
shall depend only on the coset [L*]. The theorem now follows from (14) and (15).

Let yr denote any linear graph having just one 0-cell and just r l-cells (necessarily
loops). Clearly all such linear graphs (for a fixed r) are isomorphic. We denote their
isomorphism class by yr. We call the members of the yr elementary graphs. Clearly

Po(Vr) = 1, (18)
= r. (19)
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THEOREM II. / / L is any linear graph then [L*] can be expressed as a polynomial
P[L*] = P([L*]; [y0], [y j , [yj, . . .) in the [yj such that

(i) P[L*] has no constant term,
(ii) the coefficients of P[L*] are non-negative rational integers,

(iii) the degree of P[L*] is oco(L),
(iv) P[L*] involves no suffix i greater than p^L),

and (v) if L is connected and has no isthmus A such that for some component Lo of L'A,
Px(L0) = 0; then P[L*] is of the form [yp] + [Q] where p = p^L) and [Q] is a polynomial
in those [yj for which i is less than p.

The proof is by induction. We first observe that if ac^L) is zero, then L is the product
of <xo(L) elementary graphs each isomorphic with y0. Hence by (15)

[£*] = [>„]««<«
and so the theorem is true for L.

Assume that the theorem is true for all connected hnear graphs having fewer than
some finite number n of 1-cells. Let L be any linear graph having just n 1-cells.
If L is connected, then either <xo{L) = 1, in which case

[£*] = [yj,
and so the theorem is true for L, or else L contains a link A. In the second case we have

(L*-(L'A)*-(LA)*)eW,
and therefore [Z,*] = [(L'A)*] + [(LA)*]. (20)

By (8) L'A and L"A have each fewer 1-cells than L and so by the inductive hypothesis
the theorem is true for them. The propositions (i) to (iv) follow immediately for L
from (20) with the help of (7) and (10).

Now suppose that L satisfies the conditions of (v). Then L"A also satisfies these
conditions since it is formed from L by identifying all the points and end-points of a
link, a process which cannot alter the number of components of L'B, where B is any
link other than A of L. Hence by hypothesis

where p is Px(L), and [Qp] denotes any polynomial (not always the same polynomial)
in those [yf] for which i <p.

We also have [(L'A)*] = [Q,]. (22)
This follows at once from (10) and (iv) when A is not an isthmus. If A is an isthmus,
L'A is of the form LOLX. Since L satisfies the conditions of (v), p^Lg), Pi(Lj) > 0, and
therefore sincePx{L0) +Pi(L1) = Pi(L'A) we havej)1(Z/0), ̂ 1(i1) <Pi(.L'A). Consequently
[(-&:*)•] = [(£<,)*] KA)*] = [Op] and (22) is still valid.

By (20), (21) and (22) rj,*] = [ y j + [ Q p ]

This completes the proof that the theorem for connected linear graphs is true when
ax(L) = n if it is true for a.x{L) < n. We have proved it for a^L) = 0 and therefore it is
true in general. If L is not connected we can obtain P[L*] satisfying the theorem by
multiplying together the polynomials of its components.

COROLLARY. Any element [X] of B can be expressed as a polynomial in the [yj with
rational integer coefficients and no constant term.

For X is a finite linear form in the L,- with integer coefficients.
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3. SUBGRAPHS

Let S denote any subgraph of a linear graph L. Let the number of components T of
8 such that px(T) = r be ir(S). We define a function Z(L) of L by

Z(i) = S n ^ , (23)
fir r

where the zr are independent inde terminates over the ring / of rational integers.
Although (23) involves a formal infinite product, yet for a given S only a finite number
of the ir(S) can be non-zero and so, for each L, Z(L) is a polynomial in the zi.

THEOREM III. Z(L) is a V-function.
For first it is obvious that Z(L) satisfies (4).
Secondly, if A is any link of L, then the subgraphs of L which do not contain A are

simply the subgraphs of L'A, and the subgraphs 8 of L which do contain A are in 1-1
correspondence with the subgraphs S'A of L'A. For, for such an S, 8'A is a subgraph
of L'A; and if S1 is any subgraph of U'A there is one and only one subgraph 8 of L having
the same 1-cells as 8X with the addition of A and therefore satisfying SA = 8.

Further S'A differs from 8 only in that a component T of S is replaced by T"A; and,
by (9) and (10), T"A is connected and^T") = px(T). Hence ir(SA) = ir(8) for all r.

Hence by (23) Z(L) = £ Uz^+ 2 I T ^ .
8{L'A) r S(L"A) r

where S(L'A) for example denotes a subgraph 8 of L'A. Therefore

Z(L) = Z(L'A) + Z(LA), (24)
so that Z(L) satisfies (5).

Thirdly, for any product LXL2 the subgraphs of LXL2 are simply the products of the
subgraphs Sx of Lx with the subgraphs 8% of L2. It is evident that

*r(S1-s;) = jr(Sl)+*r(^),

and therefore Z(LtL2) = £ II 2 ^ 1 ) + ^
S,,Si r

= ( s n w /s n z W = z(A) 2(L2). (25)
Thus Z(L) satisfies (4), (5) and (6). That is, it is a F-function.

THEOREM IV. Z(yT) = 2 I • *r-i- (26)
i W

For each subgraph of i/r has just one O-cell (§2), and therefore just one component.
Hence Z(yT) is a linear form in the zr. The number of subgraphs 8 such that px(S) = k
is the number with ax(S) = Jfc, by (19), and this is the number of ways of choosing k
1-cells out of r.

4. STRUCTURE OF THE RING R

LEMMA. 2 (-1)* ' • = (-!)%• (27)
i=0 W U/

This equality can be obtained by expanding af = {(x—1) + l)r in powers of (a;— 1),
expanding each of the terms in the resulting series in powers of x, and then equating
coefficients.
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THEOREM V. R is isomorphic with the ring Ro of all polynomials in the zi with integer
coefficients and no constant term.

For by Theorem III Z(L) is a F-function with values in Ro. Hence by Theorem I

Z(L) = h[L*], (28)

where h is a homomorphism of R into Ro.
Let [tf ] be the element of R defined by

; W (29)
Then, by Theorem IV and the lemma,

(^(j) (30)

lr\
If we multiply (29) by I. I, sum from i = 0 to i = r, and use the lemma we find

W

Hence by Theorem II, Corollary, any element [X] of R can be expressed as a poly-
nomial in the [tf] with integer coefficients and no constant term. Moreover this expres-
sion is unique; otherwise there would be a polynomial relationship between the [tf],
and therefore by (30) between the zt, with integer coefficients, and this would contra-
dict the definition of the zt. It follows that h is an isomorphism of R on to Ro (for every
integer polynomial in the [tj is in R).

THEOREM VI. Let x0, xlt x2,... be an infinite sequence of connected linear graphs, and
x0, xlf x2,... the corresponding isomorphism classes, such that

( i ) *o = 2/o>
(ii) p^x,) = r,

and (iii) xr contains no isthmus A such that for some component Lo of (xr)'A, P\(L0) = 0.
Then any element [X] of R has a unique expression as a polynomial in the [xj with

integer coefficients and no constant term.
By Theorem II (v) and equation (31) we have, for r > 0,

[xr] = [tr] + [Sr], (32)

where [Sr] is a polynomial in those [tj for which i < r. Hence

[tr] = [xr] + [Ur], (33)

where [Ur] is a polynomial in those [xj for which i < r. (If we assume this for r < n it
follows for r = n by substitution in (32). Since [x,,] = [y0] = [t0] it is true for r = 0,
and therefore it is true in general.) Clearly [Sr] and [Ur] have no constant terms.

By Theorem II, Corollary, and equations (31) and (33), [X] can be expressed as a
polynomial without a constant term in the [xj.

Suppose this expression not unique. Then there will be a polynomial relationship

P([XJ) = 0 (34)

between the [xj . Of the terms of non-zero coefficient in PflxJ) pick out the subse t^
of those which involve the greatest suffix occurring in them raised to the highest power
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to which it occurs. Of this subset M1 pick out the subset M2 of terms involving the
second greatest suffix appearing in Mx raised to the highest power to which it occurs
in Mlt and so on. This process must terminate in a subset Mk consisting of a single term

It is evident that if we substitute from (32) in (34), we shall obtain a polynomial
relationship <2(rtl) = 0

between the [t,], in which the coefficient of [ti]
aW [t,]"0'... is A 4= 0. But it was shown in

the proof of Theorem V that there is no polynomial relationship between the [ t j .
This contradiction proves uniqueness and so completes the proof of the theorem.

5. TOPOLOGICALLY INVARIANT ^-FUNCTIONS

Let A be a 1-cell of a linear graph L o n a complex K. Let p be any point of A. We can
obtain a new linear graph M on K from L by replacing A by the point p, taken as a
0-cell of M, and the two components of A —p taken as 1-cells of M. We call this opera-
tion a subdivision of A by p.

Given any two linear graphs Lx, L2 on the same K we can find a linear graph L3

which can be obtained from either by suitable subdivisions. Such a linear graph is
evidently obtained by taking as the set V of 0-cells the set of all points of K which are
0-cells either of LX or of L2, and by taking as 1-cells the components of K — V.

We seek the condition that a TF-function W(L) shall be topologically invariant,
i.e. depend only on K. By the above considerations a necessary and sufficient condition
for this is that W(L) shall be invariant under subdivision operations. (For then
W(LX) = W(L3) = W(LZ).)

Suppose therefore that A is any 1-cell of L, possibly a loop, and let M be obtained
from L by subdividing A by a point p. Let us denote the new 1-cells by B and G. Then
by (5) for any F-function W(L)

W(M) = W{M'B) + W(M"B)

= W{{M'B)'C) + W((M'B)'c) + W(M"B)

= W(p. (M'BYC) + W((MB)'C) + W(MB).
Here p is used to denote the linear graph which consists solely of the 0-cell p. I t is
isomorphic to y0.

By making use of the obvious isomorphisms M"B^L and (M'BYc = L0, where Lo is
the linear graph derived from L by suppressing A, we obtain

W(M) - W(L) = W(y0. Lo) + W(L0),

Therefore W(M) - W{L) = h([y0] [XJ] + [L*]), (35)

where h is a homomorphism of R, regarded as an additive group, into an additive
Abelian group G (Theorem I).

Let N denote the set of all elements of R which are of the form [y0] [X] + [X]. Clearly
N is an ideal of R. Let {X} denote that element of the difference ring R — N which
contains [X].

THEOREM VII. A function W(L) on the set of all linear graphs L to the additive Abelian
group G (commutative ring H) is a topologically invariant W-function (F-function) if

PSP43, I 3
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and only if it is of the form k{L*}, where k is a homomorphism of the additive group
R-N (ring R-N) into G (H).

For in (35), by a proper choice of L, we can have any linear graph we please as Lo.
I t follows that the necessary and sufficient condition for the JF-function W(L) to be
topologically invariant is that h shall map all elements of R of the form [y0] [L*] + [L*]
and therefore all elements of N on to the zero of G. This proves the theorem for W-
functions. The same argument applies to F-functions, except that h in (35) is then a
homomorphism of R (as a ring) into the ring H.

THEOREM VIII. Let x0, xl7x2,... be as in the enunciation of Theorem VI.
Then any element {X} of R — N has a unique expression as a polynomial in the {x{}

(i > 0) with integer coefficients.
For we can obtain such an expression for {X} by replacing each [xj by the corre-

sponding {xi} in the expression for [X] in terms of the [xj whose existence is asserted
in Theorem VI. Now for all {X}, {X} + {y0} {X} = {O}, and so R — N has a unity element
— {y0} = — {x0} which we may denote by 1. Hence {x0} is not an indeterminate over / ,
and we can regard our polynomial for {X} as a polynomial in those {xj for which i > 0
(with perhaps a constant term).

If this expression for {X} is not unique then there will be a polynomial {P} in the
{xj (i > 0) without a constant term such that

where A is some integer. Hence if [P] is the polynomial of the same form in the [xj
we must have A[xJ + [ P ] + [X()] + [x0] [Xo] = [O] (36)

for some [Xo].
Equating coefficients of like powers of [x0], as is permissible by Theorem VI, we see

that [X,,] cannot involve [x0], and hence that A = — [Xo] = [P]. Consequently {P}
is a constant and therefore, by its definition, the zero polynomial in the {x{}. The
theorem follows.

6. SOME COLOURING PROBLEMS

The homomorphism of the ring Ro (see Theorem V) into the ring of polynomials in
two independent indeterminates t and z by the correspondence zi->tzi transforms Z(L)
i n t o Q(L;t,z)= S^°(S)z^(S) (37)

s
by (23). Since Z(L) is of the form h[L*] where h is a homomorphism of R into Ro

(Theorems I and III). Q(L; t, z) can be defined by a homomorphism of R into the
ring of polynomials in t and z and is therefore a F-function (Theorem I).

The coefficient of fa2*, for fixed a, b, therefore satisfies (4) and (5) and so is a W-
function. Writing a = 1, b = 0 we obtain the function of Example I of the Introduction.
This function satisfies W(L1L2) = 0 (by (37) since po(S) is always positive) and so it
can be regarded as a F-function with values in the ring constructed from the additive
group of the rational integers by defining the 'product' of any two elements as 0.

Q{L; t, z) has an interesting property which we call
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THEOREM IX. / / Lx and L2 are connected dual linear graphs on the sphere then

t)^ Q(2;z,t). (38)
v Z

This follows from (37) as a consequence of the fact that there is a 1-1 correspondence
8->S' between the subgraphs S of Lx and the subgraphs S' of L2 such that

and Pl(S)=Ptl(S')-l.

(S' is that subgraph of L2 whose 1-cells are precisely those not dual to 1-cells of S.)
For a proof of this proposition reference may be made to the paper 'Non-separable
and planar graphs' by Hassler Whitney (Trans. American Math. Soc. 34 (1932),
339-62).

We go on to consider two kinds of colourings of a linear graph, which we distinguish
as a-colourings and fi'-colourings. Ana-colouring of L of degree A is a single-valued func-
tion on the set of 0-cells of L to a fixed set H the number of whose elements is A.

If / is an a-colouring let <f>(f) denote the number of 1-cells A of L such that /
associates all the end-points of A with the same element of H (e.g. every loop has this
property). We say that any subgraph of L all of whose 1-cells have this property for
/ is associated with / . We use the symbol S(f) to denote a subgraph associated with
a given/, and/(#) to denote any a-colouring with which a given S is associated.

THEOREM X. Let J(L; A, <j>) be the number of a-colourings f of L of degree A/or which
<j){f) has the value <j). Then the following identity is true.

\ (39)

where x is an indeterminate over I.
For, by (37) and (1), the right-hand side is

(x - 1 )<"o<£> £ A»o(S> (x - 1 )P1(S)-P0(S) = 2 (x -
s s

/(S)

for the a-colourings associated with S are precisely those which map all the 0-cells in
the same component of S on to the same element of H. This last expression equals

/sy) /

since the number of subgraphs associated with/and having just a.x(S) 1-cells is the
number of ways of choosing ax(S) 1-cells out of <j>{f). This completes the proof of the
theorem.

If we write x = 0 in (39) we find that ( - l)ao(£> J(L; A, 0), which is Example II of
the Introduction, is the F-function Q(L; —A, —1). We thus obtain the well-known
r e s u l t * J(L; A,0) = S ( - l ) a ' ( i

* Hassler Whitney, 'A logical expansion in mathematics', Bull. American Math. Soc. 38
(1932), 572-9.
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If we orient the 1-cells of L and adopt the convention that the boundary of an
oriented loop vanishes, we can define 1-cycles on L with coefficients in some fixed
additive Abelian group G of finite order A. The number* of such 1-cycles on L will be
\Pi(L) w e c a n them ^-colourings of L with respect to G.

Let E(L; G,^r) be the number of such 1-cycles for which just tfr of the 1-cells have
coefficient zero. Let ga be any /?-colouring with respect to G of L and let ^r{gG) be the
number of its zero coefficients")". We say that a subgraph S of L is associated with gG

if every 1-cell of L not in S is assigned the zero element of G as its coefficient in gG.
We use the symbol S(go) to denote a subgraph of L associated with gG and gG{S) to
denote a /?-colouring with which a given subgraph is associated. Clearly the number of
/?-colourings associated with a given S is the number of /?-colourings of S, which is

THEOREM XI. If x is an indeterminate over I then

2 E{L; G, f) x*=(x- lj-iCD-rfO Q(L; X - 1 , -^~). (40)

For, by (37) and (1), the right-hand side is
{x- i)«itf3-«oC£> 2 (x- l)J>o(S)-i>i<s) A*!*51) = 2 l(x- l)<*i<£>-<*i(S) 2 1\

S S \ ga{S) )

= 2 2 (a - 1 )"it£)-*i(8) =
o()s(gg)

for the number of subgraphs of L associated with ga and having just ax{L) — i/r(gG) + r
1-cells is the number of ways of choosing r 1-cells out of the ijr{gG) which have zero
coefficient in gG.

COROLLARY. E(L; G, i/r) is the same for all additive Abelian groups G of the same order A.
If we write x = 0 in (40) we find that ( - \)^(L)-^D E{L; G, 0), which is Example III

of the Introduction, is the F-function Q(L; — 1, —A). It takes the value — 1 when L
is y0 and therefore corresponds to a homomorphism of R into the ring of rational
integers which maps N into 0. I t is therefore, by the preceding section, topologically
invariant.

If Lx and L2 are dual linear graphs on the sphere, the /^-colourings of Lv are closely
connected with the a-colourings of L2. In fact a 1-cycle ga bounds on the sphere and
any 2-chain which it bounds on the map defined by Lx has a dual 0-chain which is an
a-colouring/A of L2 such that <j>(fK) = ft(gG)-

There is also a relationship between the a-colourings and the /^-colourings of the
same linear graph L expressed by the following identity in x

if) = A/ /( + if) A ^ K S ^ i ; \,<j>)x. (41)
\a; — 1 / /

This is obtained by writing A/(x — 1) for (x — 1) in (40) and then eliminating the function
Q by means of (39).

* See Lefschetz, Algebraic Topology (Amer. Math. Soc. Colloquium Publications, vol. 27), p. 106.
t I t may be mentioned that for graphs on the sphere a /S-oolouring is essentially equivalent

to a colouring of the regions of the map defined by a graph in A colours. The colours can be
represented by elements of O and so the colouring can be represented by a 2-chain on the map with
coefficients in G. A yff-colouring is simply the boundary of such a 2-chain. The number of 1-cells
incident with two regions of the same colour (or incident with only one region) in a given colouring
is given by the number i/r{gg) where ga is the corresponding /^-colouring.
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7. CUBICAL NETWORKS

We define a cubical network as a 1-complex for which there exists a finite simplicial
dissection in which each 0-simplex is incident with not less than two, and not more
than three 1-simplexes. Clearly any other simplicial dissection of such a complex will
have the same property. The O-simplexes which are each incident with three 1-simplexes
we call nodes. The set of nodes is evidently independent of the particular simplicial
dissection taken.

A component of a cubical network which does not contain a node is evidently a
simple closed curve, and if a component does contain nodes then the remainder of it

N

N

N'

Fig. 1

must consist of a number of non-intersecting open arcs whose end-points are nodes
of the component. We call these open arcs the arcs of the cubical network.

The number of nodes in a cubical network N is clearly two-thirds of the number of
arcs of N. It is therefore even.

Let X be an arc having distinct end-points P and Q in a cubical network N. In a
simplicial dissection of N let Ax, A2 be those 1-simplexes incident with P, and Bx, B2

those 1-simplexes incident with Q, which are not in X. Let ax, a2, bx, b2 be the other
end-points of Ax, A2, Bx, B2 respectively. By suitable subdivisions of a given simplicial
dissection we can always arrange thato^, bx, a2, b2 are distinct points and not nodes of N.

Other cubical networks can be obtained from N by replacing X, Ax, A2, Bx, B2, P
and Q by other systems of simplexes (see Fig. 1). If for example we suppress Ax and Bx,
introduce a new arc Y joining ax to bx and then introduce an arc Z joining a point in Y
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to a point in X, we obtain N. We call this process a A-operation on N. If Nx can be
obtained from N by a finite sequence of A-operations we say that N and Nt are
A-equivalent. In such a case it is clear that Nt has the same number of nodes as N and
that if N is connected, so is Nx.

By suppressing X in N we obtain N'x, and by suppressing Z in JV we obtain N'z.
We define an F-function as a single-valued topologically invariant function on the set
of all cubical networks to an additive Abelian group G or commutative ring H which
satisfies the general law F{N) _ # ( ^ ) = F{N) _ ^ ^ ( 4 2 )

THEOREM XII. / / W(L) is a topologically invariant W-function, and F(N) is the value
of W(L) for any linear graph on the cubical network N, then F(N) is an F-function.

For let No be the 1 -complex obtained from N by identifying all the points of the
closure of X, and let Lo be any linear graph on No (clearly such exist). No is evidently
homoeomorphic to the 1-complex obtained from N by identifying all the points of
the closure of Z. Since W(L) is topologically invariant it follows from (5) that

F(N)-F(N'X) = W(L0) = F(N)-F(N'Z),

which proves the theorem.
A trivial example of an .F-function is F(N) = ar"(iV) where x is an arbitrary real or

complex number and n(N) is one-half of the number of nodes of N. This function also
s a t i s f i e s F(NX u N2) = F(NX) F{N2), (43)

where Nt and N2 are any two disjoint cubical networks and Nx u N2 is their union.
Other F-functions may be obtained as follows. We define a subnetwork of N as a

1-complex which is the union of all the nodes of N and some subset of the arcs and
nodeless components of N, such that each node of N is an end-point of at least one arc
of the subset. If the number of arcs of a subnetwork T which have a given node v of N
as an end-point (arcs which are loops being counted twice) is odd, we say that v is an
odd node of T. The number of odd nodes of T is even, for it is congruent mod. 2 to the
number of end-points of arcs of T (a loop being regarded as having two end-points,
though they happen to coincide). Let k(T) be one-half the number of odd nodes of T.
Let nk{N) be the number of subnetworks of N for which k{T,) = k. As an example a
cubical network J which consists of a single simple closed curve has just two sub-
networks—J itself and the null complex—and so no(J) = 2 and n^J) = 0 (i > 0).

Let M be the 1-complex obtained from the cubical network N of Fig. 1 by sup-
pressing X, Ax, A2, B1 and B2. Let T be any subnetwork of N, N'x, N or N'z, and let
To be its intersection with M (which is contained in each of these four complexes). If
we are told which of ax, a2, blt b2 are contained in To it is easy to determine for each of
the four cubical networks how many subnetworks there are which agree with To in M,
and how many of these have 0 (or 1, or 2) odd nodes outside To. A consideration of the
possible cases will show ^ y ) + n^N'x) = nk(N) + nk{N'z), (44)

whence (— 1)"W7Tk(N) satisfies (42) and is thus an ^-function.
If therefore we define a polynomial D(N; z) by
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then ( — l)"iN)D(N; x) will be an .F-function. Further, by an argument analogous to
the proof of (25) this .F-function satisfies (43).

If JV has no nodeless component, no(N) = D(N; 0) is by its definition the number
of solutions of Petersen's problem* for JV.

We define a Hamiltonian circuit of JV as a subnetwork of JV which is connected and
has no odd nodes. It is easily verified that the residue mod. 2 of the number of Hamil-
tonian circuits of JV satisfies (42), so this also is an J-function.

Let yi+1 (i ̂  1) be a cubical network with just 2i nodes ax,az,az, ...,«2i, having just
one arc Unking each pair of nodes ar, ar+1 for which r is odd, having just two arcs
linking each pair of nodes ar, ar+1 for which r is even, and having two arcs which are
loops the end-points of one coinciding in ax and those of the other in a2l- The nodes and
arcs define a linear graph which we also denote by yi+1.

THEOREM XIII. Any connected cubical network JV of 2n nodes (n > 0) is A-equivalent
to a homoeomorph of yn+1.

For first, if JV, not being homoeomorphic to yn+1, contains a simple closed curve K
of k > 1 arcs, then JV is A-equivalent to a cubical network JVX containing a simple closed
curve of k— 1 arcs. For we can suppose that K contains the arc X (Fig. 1) and also
ax and bv Then 2V clearly has the property desired. I t follows that by a sequence of
A-operations we can convert JV into a cubical network having a loop.

Let Sr be the 1 -complex derived from yr+l (r > 0) by suppressing the loop on a2r.
If part of a cubical network M meeting the rest of M only in a single node is homoeo-
morphic with Sn we call it & frond of M of degree r, and say that the node corresponding
to a2r is the base of the frond. The above argument showed that JV is A-equivalent to a
cubical network JV2 having a frond/ (of degree r say).

Secondly either JV2 contains a simple closed curve passing through the base of/, or
it is A-equivalent to a cubical network having a frond of degree at least r with a simple
closed curve through its base. For if the base c0 of/is not on such a curve there will be
a sequence c0, clt c2, c3, ..., cs of minimum length such that consecutive nodes cit ci+1

are linked by an arc Ct, and such that cg is on a simple closed curve Kx in JV2. Otherwise
we could extend the sequence c0,cx,c2,... indefinitely in such a way that Ct differed
from Ci+1 for each i without repetitions, which is absurd since JV2 has only a finite
number of nodes. By A-operations on C0,Glt... in turn it is possible to transfer the
frond to a base on a simple closed curve without altering its degree.

Now at this stage the simple closed curve through the base of the frond may be a
loop, in which case JV has been transformed into a yj-homoeomorph, and i = n + 1 since
connexion and number of nodes are invariant under A-operations; or it may contain
just two arcs in which case JV2 has been transformed into a cubical network having a
frond of degree exceeding r; or it can be reduced to a curve of just two arcs by a
sequence of A-operations on those of its arcs not meeting the base of the frond.
Hence if JV2 is not homoeomorphic with yn + 1 it can be transformed into a cubical
network with a frond of degxee greater than r. A finite number of such transforma-
tions will therefore change it into a homoeomorph of yn+1.

* Denes Konig, Theorie der Endlichen und unendlichen Graphen (Leipzig, 1936), p. 186.
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THEOREM XIV. Let F(N) be any F-function. Then there is a unique topologically
invariant W-function W(L) such that W(L) = F(N) whenever Lisa linear graph on N.

For the linear graphs yi+1 may be taken as the linear graphs xi+1 of Theorem VI.
If we make the definitions y0 = y0 and y1 = yx then the yf clearly satisfy the conditions
of Theorem VI, and so by Theorem VIII {L*} has a unique expression as a polynomial
in the {yj. Hence there is a unique topologically invariant W-function W(L) which is
equal to F(N) whenever N is a product of yi and L is on N. By Theorem XII there is a
unique i^-function FX{N) such that W(L) = F±(N) whenever L is on N.

But if the value of an ^-function is given for every product of yi; then it is determined
for all N. For by (42) if it is known for all N such that n(N) = p and for one cubical
network M such that n{M) =p + l, then it is determined for any cubical network
My A-equivalent to a homoeomorph of M. By applying Theorem XIII to each com-
ponent having a node we see that every cubical network is A-equivalent to a homoeo-
morph of a product of yt and so the required result follows by induction. Since
F(N) = FX(N) whenever N is a product of y< it follows that F(N) = î CAf) for every
cubical network N. This proves the theorem.

COROLLARY. For an F-Junction satisfying (43) ' W-function' can be replaced by 'V-
function' in the above argument.

As an example we mention an application of the above theory to the problem of
functions obeying the law fffi = y(iV^.) +f(M0) (45)

(see Fig. 1).
By eliminating f(M0) from two equations of the form (45) it is easy to show that

f(N) is an .F-function multiplied by (— l)mW. Hence it is fixed when its values for the
products of the yi are given. But by applying (45) to these products we can show that
for them f(N) = 2niN)A where A is a constant. Since 2n<-N>A is obviously a solution of
(45) it follows that it is the general solution.
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