
van Lint and Wilson, Problem 19H: partial solution by T.Z.

We have a 3-(v, k, λ) design D such that the derived 2-design Dp is symmetric, where
p ∈P, the point set. (I assume this for every point p; I’m sure that’s what they intended,
by their wording and also because it’s necessary.) We’re asked to prove several things, falling
into five parts.

(1) An equation.

Proposition 1. (k − 1)(k − 2) = (v − 2)λ.

The derived design is a 2-(v − 1, k − 1, λ) design (easy to prove, and it’s the Corollary to
Theorem 19.3). By symmetry, rp = kp − k − 1. By Equation (19.4), rp(kp − 1) = (vp − 1)λ
for a 2-design. By substitution (k − 1)(k − 2) = (v − 2)λ. �

(2) Intersections.

Proposition 2. Two blocks that intersect have λ+ 1 common points.

Suppose B1, B2 ∈ B do intersect; let p be a common point. Then B1 \ p,B2 \ p are blocks
in the 2-(v − 1, k − 1, λ) design Dp, so they each have kp = k − 1 points. They are blocks of
a symmetric design, so by Theorem 19.9 the dual design is also a 2-(v − 1, k − 1, λ) design,
so |(B1 \ p) ∩ (B2 \ p)| = λ. It follows that |B1 ∩B2| = λ+ 1. �

I know Theorem 19.9 is later. I think everyone (including me) managed to prove this in a
different way without going ahead in the book, so I’m showing the elegant proof.

(3) Residual.

Proposition 3. The residual system DB of any block B is a 2-design.

Here PB = P \ B and BB = {B′ ∈ B : B′ ∩ B = ∅}. Thus, DB has vB = v − k,
kB = k, and we only have to establish the existence of λB = the number of blocks of DB on
two points x, y /∈ B. These are blocks B′ ∈ B that are disjoint from B, which we calculate
by first counting the blocks B′ 3 x, y of D that do intersect B; let this number be c.

This is a bit complicated! Consider only blocks B′ on x, y. The number of pairs (B′, p)
with p ∈ B′ ∩ B is the sum over all such B′ of the number of points p ∈ B′ ∩ B, which is
λ+ 1 by (2). This number equals c(λ+ 1). Counting pairs another way, for each p ∈ B there
are λ blocks containing x, y, p; thus the number of pairs is kλ. It follows that

(a) c =
kλ

λ+ 1
.

Now λB = b2 − c, because the total number of blocks on x, y is b2 of Theorem 19.3. So,
recalling that tB = 2, we get

(b) λB = λ
v − 1

k − 1
− λ k

λ+ 1
= λ

[v − 1

k − 1
− k

λ+ 1

]
.

Since this is independent of the choice of x, y, we have a 2-design DB. �

From Proposition 1 we get λB > 0; I omit the calculation.
Equation (a) implies

λ+ 1|k
and then Equation (b) implies

k − 1|v − 1.



(4) Fisher-y.

This is where it gets sticky. I’m stuck! (so far).
I assume k ≥ 3, since for a 3-design with k < 3, λ = 0 and it’s trivial, boring, and perhaps

slightly disgusting.
In order to apply Fisher’s inequality to DB as hinted, we need bB > 1. Thus, there are

two cases. Actually, there are three cases.

Case 0: v < 2k.
Case 1: v = 2k, bB = 1.
Case 2: v > 2k, bB ≥ vB = v − k (by Fisher).

The problem here is to show the equations for k. TO BE DONE
First, we have to calculate bB.

(5) Examples.

Case 0: Since vB < kB, bB = 0. I don’t think we’re supposed to take this seriously. If
we did, we could calculate bB and show that this case occurs if and only if v = k + 1 or
(λ + 1)(v − 1) = k(k − 2). I haven’t succeeded in classifying these examples. For the first
type, the complementary design has k̄ = 1, which seems ridiculous, and I don’t know what to
make of it. For the second type, (λ+1)v = (k−1)2 and since λ+1|k, this looks improbable,
but I don’t know.

Case 1: The hint implies this should be a Hadamard-type design. That remains TO BE
DEVELOPED.

Case 2: TO BE DONE.
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