LEMMA FOR ERDŐS–KO–RADO THEOREM 6.4

We assume $0 < k < n/2$. The intersecting family of k-sets contained in [n] is A. There was a missing part of the proof because Case 2 was too complicated. I think it really is complicated, but maybe there is an easier proof.

Lemma 1 (Lemma 6.4A). The number of k-sets of A that are intervals in a circular ordering \mathcal{F}^{π} is at most k.

Proof. We use $\mathcal F$ and assume one of the sets is $A_0 = [k]$. Then any other set $S \in \mathcal A \cap \mathcal F$ has $\max S > 1$ and $\min S \leq k$ in order to overlap A_0 .

Case 1: The sets don't wrap around; i.e., there is an $i \in [n]$ such that none of the sets contains both i and $i + 1$. Choose the biggest possible i; then we can assume $i = n$ by relabelling and no set S will contain n, since min $S \geq 1$ and max $S \leq 2k - 1 < n$. So the only possible sets are $A_0 + i$ for $i = 0, 1, \ldots, k - 1$.

Case 2: The sets wrap around. Then there have to be sets $B, C \in A \cap \mathcal{F}$ such that $n \in B$, $k + 1 \in C$, and $A_0 \cap B \cap C = \emptyset$. (The B's and C's are distinct because no k-interval can contain both n and $k + 1$ and also intersect A_0 .

Each B is characterized by $j = \max B$. Among all B's let j_{\max} and j_{\min} be the largest and smallest values of j. Each B has $j_{\min} \le \max B \le j_{\max}$, so the number of B's is at most $j_{\text{max}} - j_{\text{min}} + 1$. For later use, let B_{min} be the B with $j = j_{\text{min}}$.

Each C is characterized by $h = \min C$. Among all C's let h_{\max} and h_{\min} be the largest and smallest values of h. Each C has $h_{\min} \leq \min C \leq h_{\max}$, so the number of C's is at most $h_{\text{max}} - h_{\text{min}} + 1$. For later use, let C_{max} be the C with $h = h_{\text{max}}$.

In order for all $B \cap C$ to be nonempty, we must have $h_{\min} + k - 1 \ge j_{\max} - k + 1 + n$, because max $C_{\min} = h_{\min} + k - 1$ and (adjusted by adding n) $\min B_{\max} = j_{\max} - (k - 1) + n$. Thus, $h_{\min} - j_{\max} \ge n + 2 - 2k$.

A k-interval $A \in \mathcal{A} \cap \mathcal{F}$ that is not a B or a C has the property that the nonempty intersections $A \cap B$, $A \cap C \subseteq A_0$. Since $A \cap C_{\text{max}} \neq \emptyset$, we have $i = \max A \geq h_{\text{max}}$. Since $A \cap B_{\min} \neq \emptyset$, we have $i - k + 1 = \min A \leq j_{\min}$. Thus, $h_{\max} \leq i \leq j_{\min} + k - 1$. It follows that the number of A's is at most $(j_{\min} + k - 1) - h_{\max} + 1$; this includes A_0 , for which $i = k$.

Every k-interval that belongs to A is an A, a B, or a C. Therefore, the total number of such k-intervals is at most

$$
[(j_{\min} + k - 1) - h_{\max} + 1] + [j_{\max} - j_{\min} + 1] + [h_{\max} - h_{\min} + 1]
$$

= k + 2 - (h_{\min} - j_{\max})
 $\leq k + 2 - (n + 2 - 2k) = 3k - n \leq k$

since $3k \leq 3n/2$.

Case 1 was the easy part, though here I'm making it a little less obvious in order to simplify the proof without a diagram.

Note that the upper bound in Case 2 is attainable only when $k = n/2$.

Example 1. To show the upper bound is attainable in Case 2 when $n = 2k$, consider $k = 3$. Let $A \cap \mathcal{F} = \{123, 345, 561\}$. This has k sets in it. It should be easy to generalize to any $k > 0$.