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Meshalkin’s theorem states that a class of ordered p-partitions of an n-set has at

most maxð n
a1 ;...;ap

Þ members if for each k the kth parts form an antichain. We give a

new proof of this and the corresponding LYM inequality due to Hochberg and

Hirsch, which is simpler and more general than previous proofs. It extends to a

common generalization of Meshalkin’s theorem and Erd +oos’s theorem about r-chain-

free set families. # 2002 Elsevier Science (USA)
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An antichain of sets is a class of sets of which none contains another. Sperner
[8] bounded the size of an antichain A of subsets of an n-element set S:

jAj4
n

bn=2c

 !
;

with equality if A ¼ Pbn=2cðSÞ or Pdn=2eðSÞ; where by PkðSÞ we mean the
class of k-element subsets of S: Subsequently, Lubell [5], Yamamoto [9], and
Meshalkin [6] independently obtained a stronger result (of which Bollobás
independently proved a generalization [2]): any antichain A satisfies

X
A2A

1

n
jAj

� �41;

and equality holds if A ¼ Pbn=2cðSÞ or Pdn=2eðSÞ:
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We give a very short proof of a considerable generalization of these
results. A class A of subsets of S is r-chain-free if A contains no chain of
length r:2 (A chain is a class of mutually comparable sets, that is, T 
 T 0 

� � � 
 T ðlÞ: Its length is l:) A weak composition of S into p parts is an ordered
p-tuple A ¼ ðA1; . . . ;ApÞ such that the Ak are pairwise disjoint subsets of S

and their union is S: We call Ak the kth part of A: A part Ak may be void
(hence the word ‘‘weak’’). If M ¼ fA1; . . . ;Amg is a class of weak
compositions of S into p parts, we write Mk ¼ fAi

kg
m
i¼1 for the class of

distinct kth parts of members of M: A multinomial coefficient of the form
ð n

a1;...;ap
Þ is called a p-multinomial coefficient for n. Our result is:

Theorem. Let n50; r51; p52; and let S be an n-element set. Suppose

M is a class of weak compositions of S into p parts such that, for each kop;
Mk is r-chain-free. Then

(a)
P

A2M
1

n
jA1j;...;jApj

� �4r p�1; and

(b) jMj is bounded by the sum of the r p�1 largest p-multinomial

coefficients for n:

The number of p-multinomial coefficients for n is ðnþp�1
p�1

Þ; if r p�1 exceeds
this we extend the sequence of coefficients with zeros.

Our theorem is a common generalization of results of Meshalkin
and Erd +oos. The case r ¼ 1 of part (b) (with the added assumption
that every Mk is an antichain) is the relatively neglected theorem
of Meshalkin [6]; later Hochberg and Hirsch [4] found (a) for this
case, which implies (b). Our extension to r > 1 is inspired by the case
p ¼ 2; which is equivalent to Erd +oos’s theorem [3] that for an r-chain-free
family A of subsets of S; jAj is bounded by the sum of the r largest
binomial coefficients ðn

k
Þ; 04k4n; and its LYM companion due to Rota and

Harper [7]. We need the latter for our theorem; we sketch its proof for
completeness’ sake.

Lemma (Rota and Harper [7, p. 198, (*)]). For an r-chain-free family A
of subsets of S;

X
A2A

1

n
jAj

� �4r:

Proof. Each of the n! maximal chains in PðSÞ contains at most r

members of A: On the other hand, there are jAj!ðn � jAjÞ! maximal chains

2 An r-chain-free family has been called an ‘‘r-family’’ or ‘‘k-family’’, depending on the name

of the forbidden length, but we think it is time for a distinctive name.
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containing A 2 PðSÞ: Now count, givingX
A2A

jAj!ðn � jAjÞ!4rn!:

The lemma follows. ]

Proof of the Theorem. Our proof of the whole theorem is simpler than
the original proofs of the case r ¼ 1: The proof of (a) here (which is different
from the more complicated although equally short proof by Hochberg and
Hirsch) is inspired by the beginning of Meshalkin’s proof of (b) for r ¼ 1:
We proceed, as did Meshalkin, by induction on p: The case p ¼ 2 is
equivalent to the lemma because if ðA1;A2Þ is a weak composition of S; then
A2 ¼ S=A1: Suppose then that p > 2 and (a) is true for p � 1: Let MðFÞ ¼
fðA2; . . . ;ApÞ : ðF ;A2; . . . ;ApÞ 2 Mg: Since MðFÞkDMkþ1; MðFÞk is
r-chain-free for kop � 1: Thus,

X
A2M

1

n
jA1j;...;jApj

� � ¼
X
A2M

1

n
jA1j

� � 1

n�jA1j
jA2j;...;jApj

� �

¼
X

F2M1

1

n
jF j

� � X
A02MðFÞ

1

n�jF j
jA2j;...;jApj

� �;
where A0 ¼ ðA2; . . . ;ApÞ;

4
X

F2M1

1

n
jF j

� � r p�2

by the induction hypothesis,

4r r p�2

by the lemma. This proves (a).
To deduce (b), write the p-multinomial coefficients for n in any weakly

decreasing order as M1;M2; . . . ; extended by 0’s as necessary to a sequence
of length r p�1: In the left-hand side of (a), replace each of the M1 terms with
largest denominators by 1=M1: Their sum is now 1: Amongst the remaining
terms all denominators are at most M2; replace the M2 of them with the
largest denominators by 1=M2: Now their sum is 1: Continue in this fashion.
The number of terms could be less than T ¼ M1 þ � � � þ Mr p�1 ; in that case,
jMjoT : Otherwise, after r p�1 steps we have replaced T terms and have on
the left-hand side of (a) a sum equal to r p�1 plus any further terms. As the
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total is no more than r p�1; there cannot be more than T terms. Thus, we
have proved (b). ]

Our proof is naturally general: that of (a) would be no shorter even if
restricted to r ¼ 1 (but the deduction of (b) would become trivial). What is
more, it is applicable to projective geometries [1]. Furthermore, our proof,
even restricted to r ¼ 1; is simpler than the original proofs by Meshalkin and
Hochberg–Hirsch.

The upper bounds in the theorem can be attained only in limited
circumstances. When r ¼ 1; the maxima are attained if for each k; Mk ¼
Pbn=pcðSÞ or Pdn=peðSÞ [6]. When p ¼ 2; the upper bounds are attained if M1

is the union of the r largest classes PmðSÞ [3]. When r > 1 and p > 2;
the upper bounds are only sometimes attainable, but proving this is
complicated.
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