
Errata for Kung, Rota, and Yan,
Combinatorics: The Rota Way

* denotes mathematical errors, including serious typographical er-
rors.

** denotes very substantial errors.

1. *Maximal vs. maximum chains, et al. The difference between these
concepts is important in combinatorics and not discussed in our
book. A maximum chain is a chain of maximum size.

Proposition. A maximum chain is maximal, but a maximal chain
need not be maximum.

2. Stirling numbers (note by Tom Zaslavsky): They are in the index
under “numbers” (not “Stirling numbers”).

An error: the book uses the notation s(n, k) for the unsigned
Stirling number of the first kind, but this is not standard. The
usual and traditional notation is that s(n, k) is the Stirling number
of the first kind. If we write c(n, k) for the unsigned Stirling number,
then s(n, k) = (−1)n−kc(n, k). It was a mistake to use the Stirling
number notation for a different number.

The book seems to omit the inverse relationship of the Stirling
numbers (which is where they began, historically). This relationship
is (using correct notation)

xn =
∑
k≥0

S(n, k)(x)k, (x)n =
∑
k≥0

s(n, k)xk.

Here (x)n denotes the falling factorial.
3. **P. 8, problem 1.1.9(b) (note by Laura Anderson): I believe that

this is incorrect. For instance, let G be the collection of all finite
unions and intersections of sets of the following forms:
(a) (−∞, b),
(b) [b,∞),
(c) the single set S =

⋃∞
i=1[

1
2i+1

, 1
2i

),
(d) Sc.
G satisfies the hypotheses of the problem, but it’s not isomorphic
to H. H has the property that there is a chain C such that every
element of H is a finite union/intersection of elements of C and
{Xc : X ∈ C}. G does not have this property.

4. *P. 9, “maximal chain”: The text says a chain x0 < x1 < · · · < xn
is “maximal or saturated” if all the < are covering relations. This
is a correct definition of saturated but it is incorrect for “maximal”.
A chain is maximal if it is not a proper subset of any other chain.
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Proposition. A maximal chain is saturated, but a saturated chain
need not be maximal.

5. *P. 12, problem 1.2.2b. If “suborder” means that Q ⊆ P and ≤Q is
the restriction of ≤P to Q, then this is correct. If “suborder” means
the sets P and Q are the same but the relation ≤Q⊆≤P , then this
is incorrect; for instance, take Q to be an antichain and P to be a
chain.

6. *Exercise 1.2.4(c): (−1)n should be (−1)|P |.
7. **P. 21 (note by Tom Zaslavsky): Exercise 1.3.4(b) is misstated. A

counterexample is a chain of length > 2. I’m not sure what they
mean.

8. P. 44, first line of §1.5: “from S to X”.
9. *P. 45, displayed equation about h: ∪ should be ∨.

10. *P. 46, displayed equation: c ≥ a should be c ≥ x.
11. *P. 47, Proposition 1.5.3b: “the order dual Q↓” should be “Q”.
12. **Problem 1.5.4 (note by Tom Zaslavsky): The “improvement” is

mistaken. I looked in the cited papers and did not find a reasonable
formula to serve as a correction. For Part (b), prove only the lower
bound.

13. **P. 53: The Putnam problem is not stated correctly. The last
sentence should read:

Show that there exists a permutation π of {1, 2, . . .}, match-
ing the red points with the blue points, such that no pair
of finite line segments ribπ(i) and rjbπ(j) crosses—that is, no
such pair intersects at exactly one point in their interior.

(Note by Kung–Yan)
14. **P. 56: The statement of Marshall Hall’s Theorem is incorrect.

Notice that if |S| = 1 then R has only k matchings. The correct
statement is that R has at least (k)|S| matchings if |S| ≤ k and
at least k! matchings if |S| ≥ k. (Exercise: Prove it.) (Thanks to
Laura Anderson, Thomas Galvin, and Alireza Salahshoori.)

15. *Exercise 2.2.3 (note by Tom Zaslavsky): There is a missing assump-
tion. Without assuming |X| ≥ |S|, the conclusion is not provable.
(Exercise!)

If you solve the problem for the case |X| = |S|, that is good work.
If you prove it is not true for the case |X| > |S| (I don’t know

whether that is so, but maybe it is), that would be good work.
16. P. 61, Exercise 2.2.2. The problem may intend to assume G is finite.

If it is infinite, the index is |G:H|, the number of cosets.
In part (a): Don’t use König’s theorem; use a direct method so

you can answer part (b).
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17. *P. 63, determinant formula: There should be a sign factor, sgn(σ),
in the sum.

18. *Corollary 2.3.2. In part (a), “matching” should be “partial match-
ing”. Part (b) should read “rank ≥ |S| − d.” There is no upper
bound in this corollary.

*In part (b), “rank ≥ |S| − d.”
19. *Exercise 2.3.2: In the top line of page 66, “and columns in A”

should be “and columns in B”.
20. **P. 71, Theorem 2.4.4: In Equation (FF), τ should be max τ . The

formula gives the maximum possible size of a common transversal.
Note that a transversal is not the same as a matching; it is only

the S-ends of a matching.
21. P. 82, line 2: “row vector” should be “vector”. This is standard

notation for a vector and is equivalent to a column matrix.
22. *P. 82, Theorem 2.6.4: Here is a proof that is more complete and

easier to follow. (Contributed by Jake Zukaitis.)

Proof. We may assume r and s are in weakly decreasing order.
This is because any reordering of s or r corresponds, respectively,
to rearranging the rows or columns of D, which keeps the matrix
doubly stochastic and preserves the relation r = sD. So, we let
r = (r1, . . . , rn) and s = (s1, . . . , sn) with both in weakly decreasing
order.

Proof of Necessity. The proof is by induction on the number of
corresponding entries that differ in r and s. Suppose that r � s.
Then either r = s and D can be taken to be the identity matrix, or
there exist indices j and k such that rj < sj and rk > sk. Choose k
to be the smallest value with rk > sk and choose j to be the largest
value smaller than k with rj < sj. (j exists because r1 + · · ·+ rk ≤
s1 + · · · + sk.) This means that j < k and for all i in this interval,
if there are any, ri = si. Let δ = min{sj − rj, rk − sk} and let
λ = δ

sj−sk
; thus, 0 < λ < 1. Let Q be the permutation matrix for

the transposition (jk). Then T1 = (1−λ)I+λQ is a transfer matrix
and s′ = sT1 has entries (s1, . . . , sj − δ, . . . , sk + δ, . . . , sn). Either
δ = sj − rj, so that sj − δ = rj, or δ = rk − sk, so that sk + δ = rk.
Either way, s′ will have more entries in common with r than s does.
We still must show that r � s′.

First we show that rj ≤ s′j. If δ ≤ sj − rj, equality holds; but if
δ = rk−sk ≤ sj−rj, rearranging the terms gives rj ≤ sj +sk−rk =
sj − δ = s′j. Similarly, rk ≥ s′k.

We next show that s′ is in weakly decreasing order; that is, s′j ≥
s′j+1 and s′k ≤ s′k−1. Suppose s′j+1 > s′j. Since s′j ≥ rj, this implies
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s′j+1 > rj. If j + 1 < k, then s′j+1 = sj+1 = rj+1 ≤ rj, which is
impossible. If j + 1 = k, then rj ≤ s′j < s′k ≤ rk, contradicting weak
decrease of r. Similarly, s′k−1 ≥ s′k. Thus s′ is in weakly decreasing
order.

Finally we show that r � s′. Clearly,
∑n

i=1 ri =
∑n

i=1 s
′
i. To show

that
∑l

i=1 ri ≤
∑l

i=1 s
′
i for l < n, we consider cases. First, if l < j

or l ≥ k, the sum for s′ equals that for s. Now consider the case
l = j. Since rj ≤ s′j,

j∑
i=1

ri =

j−1∑
i=1

ri + rj ≤
j−1∑
i=1

si + rj =

j−1∑
i=1

s′i + rj ≤
j−1∑
i=1

s′i + s′j =

j∑
i=1

s′i.

The inequality then holds for j < l < k by the fact that ri = si on
this interval. Thus r � s′ = sT1.

This process can be continued until some r = s(m) = sT1 · · ·Tm.
Letting D = T1 · · ·Tm finishes the proof of necessity.

Proof of Sufficiency. Suppose that there is a doubly stochastic
matrix D = (dij) such that r = sD. Then r1 + · · · + rn = reT =
sDeT = seT = s1 + · · · + sn, where e = (1, 1, . . . , 1) (see page 78).
Also, rj =

∑n
i=1 sidij.

To show that
∑k

i=1 ri ≤
∑k

i=1 si for 1 ≤ k < n, we calculate:

k∑
j=1

rj =
k∑
j=1

n∑
i=1

sidij =
k−1∑
i=1

k∑
j=1

sidij +
n∑
i=k

k∑
j=1

sidij

≤
k−1∑
i=1

k∑
j=1

sidij + sk

k∑
j=1

n∑
i=k

dij

because sk ≥ si for i > k,

=
k−1∑
i=1

k∑
j=1

sidij + sk

k∑
j=1

(1−
k−1∑
i=1

dij)

=
k−1∑
i=1

k∑
j=1

sidij + ksk − sk
k−1∑
i=1

k−1∑
j=1

dij

=
k−1∑
i=1

(si − sk)
k∑
j=1

dij + ksk ≤
k−1∑
i=1

(si − sk) + ksk =
k∑
i=1

si.

With this, r � s, completing the proof. �

23. P. 83, line 2: “matrices” should be “entries”.
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24. **Pp. 82–83, Theorem 2.6.4: The proof sketch is confusing. It needs
to be substantially rewritten.

25. *P. 93, Exercise 2.6.17: The inequality should be ≥.
26. P. 94, conjugate: It is important that l ≥ max ci (= c1). Also, if

l > max ci, the effect is to add a string of 0’s to the end of the
conjugate sequence. You are always allowed to add 0’s at the end if
you need a larger l. (Thanks to Thomas Galvin and Jake Zukaitis.)

*Also, in the definition of c∗k, the range of k is 1 ≤ k ≤ l. (Thanks
to Alireza Salahshoori.)

27. P. 99, Exercise 2.7.1: Recall that the conjugate must be long enough,
as in the note about p. 94.

28. P. 100, Exercise 2.7.3: There seem to be four errors. (Thanks to
Jake Zukaitis.)

The length of r∗ must satisfy n ≥ max ri (as was stated in the
definition of a conjugate on p. 94), or else the row sums cannot be
attained.

*The vector s ends with sn, not sm.
At the end of the same line, “a” should be “any”.
**Most seriously, the stated problem is false. Ryser’s paper proves

only the “generalization”.
29. *P. 110: In the displayed formula at the bottom, 0 should be δ(x, y).

Also, since y is closed, ȳ = y and the bar should be ignored.
30. *P. 112, last line of Thm 3.1.7: “closure operator” should be “coclo-

sure operator”.
31. P. 113, line 7: We are now assuming A is a lower crosscut because it

is the A of the definition on page 112. (Thanks to Thomas Galvin.)
32. *P. 114, line 5 and the summation in Theorem 3.1.10: A should be

C. (Thanks to Thomas Galvin.)
33. P. 115, Philip Hall’s theorem: If we write µ(x, y) = c0− c1 + c2−· · ·

we cover x ≤ y, not only x = y.
34. *P. 116, Eq. (Mf2): z should be b and (a, b) should be (a, y).

**(Note by Tom Zaslavsky) The book’s suggestion for a proof
makes no sense to me. There is a simple direct proof. Use the
definition of µ(a, b) twice: in [a, b]P it gives

0 =
∑

z∈[a,b]P

µP (a, z) =
∑

z∈[a,b]P
f(z)<f(b)

µP (a, z) +
∑

z∈[a,b]P
f(z)=f(b)

µP (a, z)

and in [a, b]f it gives

0 =
∑

z∈[a,b]f

µf (a, z) =
∑

z∈[a,b]f
z<b

µf (a, z) + µf (a, b).
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Now observe that any x ∈ [a, b]P such that f(x) < f(b) is in
the interval [a, b)f and vice versa, so that if z ∈ [a, b]P satisfies
f(z) < f(b), then the intervals [a, z]P and [a, z]f are identical. Thus,
µP (a, z) = µf (a, z). It follows that

µf (a, b) = −
∑

z∈[a,b]f
z<b

µf (a, z) = −
∑

z∈[a,b]P
f(z)<f(b)

µP (a, z) =
∑

z∈[a,b]P
f(z)=f(b)

µP (a, z).

35. *P. 118, Ex. 3.1.1: In PM3, “image of f” should be “the image of
σ”. Also, A must have characteristic 0 for equivalence to hold.

36. P. 121, Ex. 3.1.8: There may be some confusion about the definition.
The zeta function Z(P ;n) = the number of multichains of size n in
P .

**In (a): The correct formula is Z(P ;n) =
∑d+2

i=2 bi
(
n−2
i−2

)
, where

bi is the number of chains of length i− 2 in P . (Note that d+ 2 can
be replaced by ∞.)

In (b): Prove that ζn(0̂, 1̂) = the number of multichains of length
n from 0̂ to 1̂ in P (hint). Then prove that Z(P ;n) = ζn(0̂, 1̂) for
n ∈ Z, starting with n > 0 (hint).

*In (c): 2n− 1 should be 2n. (Thanks to Jake Zukaitis.)
Also in (c), the zeta and order polynomials should have semi-

colons, not commas.
Also in (c), the zeta polynomial should be Z(Interval(P );n) with

Z, not ζ. (Thanks to Roberto Gonzalez.)
37. *P. 123, Exercise 3.1.10b: This is not true for general closure op-

erators. One needs to assume the property mentioned in the hint,
which is not true in general. (Steven Collazos pointed this out.)

38. *P. 123, Exercise 3.1.10c: The Frattini subgroup is the intersection
of all the maximal proper subgroups of G.

39. *P. 126, Exercise 3.1.15: The displayed union has a mistake. The
union should be over C ∈ C : C ⊆ A and C ⊆ B.

The word “interval” has two different meanings here. First mean-
ing: an integer interval ([a, a + 1, . . . , b] in Z). Second meaning: a
lattice interval [A,B] in L(C). Be careful to distinguish.

In (b), by “is an interval lattice” they meant “is isomorphic to an
interval lattice”.

40. *P. 127, Cor. 3.2.2: “a chain of size m+ 1”.
41. *P. 131, Pretzel’s proof: The book appears to be defining a “satu-

rated” chain but this definition is wrong. If we change the name to
“orange” (a randomly chosen word), the proof should be valid.

42. P. 132, Exercise 3.2.1: Remember that the length of a sequence is
the number of elements.
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43. *P. 132, Exercise 3.2.2: “maximum length” should be “maximum
size”. (Thanks to Jake Zukaitis.)

44. P. 136: The other “Sperner’s theorem” is generally known as Sperner’s
lemma.

45. P. 137: “Mes̆alkin” is Russian and is normally spelled Meshalkin in
English.

46. P. 137: The quotient C/Am should be |C|/|Am|.
47. **P. 137, end of Sperner’s proof: “the possibility of constructing an

equally large antichain by taking a mixture ...”. (We already ruled
out a larger antichain.) It is not clear how (NM) gives an easy proof
of this.

48. P. 139: A symmetric chain decomposition of a (ranked) poset implies
a Sperner-type theorem. In particular, Lemma 3.3.3 gives a fifth
proof of Sperner’s theorem.

49. **P. 145, Ex. 3.3.2: The setup for Meshalkin’s theorem is wrongly
stated.

An ordered weak partition of [n] is an s-tuple A = (A1, A2, . . . , As)
of pairwise disjoint subsets of [n] whose union is [n], not excluding
the empty set (hence called “weak”). (Any number of the subsets
may be empty.)

We have a set O of ordered weak partitions of [n]. Let O =
{A1, A2, . . . , Ap} be a family of ordered weak partitions of [n]; Me-
shalkin’s condition is that, for each j < p, the sets Aij for 1 ≤ i ≤ p
form an antichain. (We don’t care about the p-th sets in each or-
dered weak partition.) Meshalkin’s formula for the maximum size
of O is stated correctly in the book.

50. P. 145, Ex. 3.3.6: “matchin.” should be “ matchin’ ”.
51. *P. 146, Ex. 3.3.7, HR2: “max” should be “min”. (Thanks to

Thomas Galvin.)
52. *P. 155, after proof of Dubreil–Jacotin Thm.: “A lattice L is linear

if there exists an injective lattice homomorphism...”
53. P. 157, line −15: “Whether this equality holds for n ≥ 4 is un-

known.” In fact, this is known and it is false. (Note by Kung–Yan)
54. P. 157, line −4: We should have noted that Haiman’s proof theory

does not imply that the universal Horn theory of linear lattices is
decidable. It is not. See, for example, G. Hutchinson, Recursively
unsolvable word problems of modular lattices and diagram-chasing,
J. Algebra 26 (1973) 385–399; L. Lipshitz, The undecidability of
the word problems for projective geometries and modular lattices,
Trans. Amer. Math. Soc. 193 (1974) 171–180. (Note by Kung–Yan)
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55. P. 162, second paragraph and Lemma 3.5.2: The Jordan–Dedekind
chain condition is unnecessary. Since we’re restricting to finite lat-
tices, Jordan–Dedekind is equivalent to ranked.

56. *P. 162, proof of 3.5.2: The statement that x1∨y1 covers x is true if
x1 6= y1. If x1 = y1, the conclusion follows from the shorter interval
[x1, y].

In line −2, zk−1 < zk.
57. *P. 167, Theorem 3.5.9: Jk and Mk are reversed.
58. **P. 180: The proof of Theorem 4.1.1 has a major but fixable flaw—

a “gaffe” as Rota would say. To fix this, replace the second sentence
in the proof by

The number of ways to choose a partition B1, B2, . . . , Bc

of {1, 2, . . . , n} such that |Bi| = ni is

n!

a1!a2! · · · an!n1!n2! · · ·nc!
where ai is the number of parts nj such that nj = i. On the
block Bi, there are |Cni

| ways of putting an atom. Hence,
the total number of molecules on {1, 2, . . . , n} with c com-
ponents is∑
n1, n2, . . . , nc

n!

a1!a2! · · · an!n1!n2! · · ·nc!
|Cn1||Cn2 | · · · |Cnc |.

The product formula now follows from the multinomial the-
orem.

(Note by Kung–Yan)
59. *P. 181: In the formula for f(C; t), the summation should begin at

n = 1. (Thanks to Jake Zukaitis.)
60. *P. 181 (bottom) and p.182 (top): The x(n) at the bottom of p. 181

should be x(n) (rising factorial), and rising factorial should replace
falling factorial at the top of p. 182 in the generating function for
the unsigned Stirling numbers of the first kind. The formula given
is the correct formula for the (signed) Stirling numbers of the first
kind.

61. P. 182, Ex. 4.1.1: In line 2, A should be S.
62. P. 186: “rigorous proof of Proposition 4.1.1” means Proposition

4.2.1.
63. **P. 187, proof of Theorem 4.2.2: (Note by Laura Anderson.) There’s

something here that is copied from Rota’s original paper, but I think
it’s wrong there too. (Actually, Tom Zaslavsky pointed it out.) The
function M is defined on Q[β], but then the proof applies M to
things that aren’t in Q[β] – specifically, M(eβt). The fix I came up
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with was to define

M̃ : Q[β][[t]] → Q[[t]]

M̃(
∞∑
i=0

pi(β)ti) =
∞∑
i=0

M(pi(β))ti.

It’s then easy to check that for anyP (β, t),

d

dt
M̃(P (β, t)) = M̃(

d

dt
P (β, t))

p(t)M̃(q(β, t)) = M̃(p(t)q(β, t)).

This makes the rest of the argument work.
64. *P. 188: The statement of Dobinski’s formula is incorrect. The

numerator (j + 1)n should be jn. The expansion given immediately
afterwards has the same problem.

65. P. 187: The D in Boole’s formula is the differentiation operator.
66. *P. 190, before Theorem 4.3.3: In the definition of a basic sequence

for the delta operator Q, the correct relation is that Qpn(x) =
npn−1(x), not pn−1(x).

67. P. 352: The Ex. 3.5.2(a) hint is for Ex. 3.5.3(a).


