HOMEWORK ON ARRANGEMENTS OF HYPERPLANES AND INSIDE-OUT POLYTOPES

- 1. Prove Lemma 1 by induction on r(y).
- 2. Prove Lemma 2. (Relatively hard.)
- 3. Prove **Lemma 3**: $f_d(\mathcal{H})$, the number of regions of \mathcal{H} , obeys the law

$$f_d(\mathcal{H}) = f_d(\mathcal{H} \setminus \{h\}) + f_{d-1}(\mathcal{H}^h),$$

where \mathcal{H}^h denotes the arrangement induced in h by \mathcal{H} .

- 4. Prove Theorem 2 using Lemma 2. (Hint: Use Lemma 3.)
- 5. Prove the chromatic polynomial of a graph obeys the law

$$\chi_{\Gamma}(\lambda) = \chi_{\Gamma \setminus e}(\lambda) - \chi_{\Gamma/e}(\lambda)$$

for every edge e.

- 6. Prove that, for a link e in Γ , $\mathcal{H}[\Gamma/e] = \mathcal{H}[\Gamma]^{h_e}$, where h_e is the hyperplane that corresponds to edge e.
- 7. Prove that a tree T of order d has chromatic polynomial $\lambda(\lambda-1)^{d-1}$.
- 8. Prove that, if e is an isthmus in a graph Γ , then

$$\chi_{\Gamma}(\lambda) = (\lambda - 1)\chi_{\Gamma \setminus e}(\lambda).$$

(This gives a generalization of the previous question.)

9. Prove that, if $h \in \mathcal{H}$ and $r(\mathcal{H} \setminus \{h\}) \neq r(\mathcal{H})$, then $r(\mathcal{H} \setminus \{h\}) = r(\mathcal{H}) - 1$ and

$$p_{\mathcal{H}}(\lambda) = (\lambda - 1)p_{\mathcal{H}\setminus\{h\}}(\lambda).$$

- 10. Use the previous problems to assemble a complete proof of Theorem 3.
- 11. Prove **Lemma 8**: In a poset A, define $\mu^*(x,y)$ by

$$\mu^*(x,y) = \begin{cases} 0 & \text{if } x \not \leq y, \\ 1 & \text{if } x = y, \\ -\sum_{z:x < y \le z} \mu^*(z,y) & \text{if } x < y. \end{cases}$$

Then $\mu^* = \mu$.

- 12. Show that a hyperplane is rational, in the sense of having an equation with integral coefficients, if and only if it is affinely generated by rational points.
- 13. Prove that, for any affine subspace $u \subseteq \mathbb{R}^d$ and convex polytope P, we have

$$\operatorname{aff}(u \cap P^{\circ}) = u \cap \operatorname{aff}(P).$$

1

14. Open question: Is it true that $\mathcal{L}(P^{\circ}, \mathcal{H})$, defined as

$$\{P^{\circ} \cap (\bigcap S) : P^{\circ} \cap (\bigcap S) \neq \emptyset\},\$$

is always isomorphic as a poset to

$$\{(\bigcap S): P^{\circ} \cap (\bigcap S) \neq \emptyset\}$$
?

- 15. Use the geometrical argument outlined in class, along with Rota's sign theorem for the Möbius function, to show that the chromatic polynomial $\chi_{\Gamma}(k) = \sum_{d=c}^{n} a_d k^d$ where c = number of components of the graph Γ , n = number of vertices, and $(-1)^{n-d}a_d > 0$ (sign property).
- 16. Let $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$ and define $h_i^+ := \{y \in \mathbb{R}^n : x_i \cdot y > 0\}$. Prove: **Theorem.** The intersection $h_1^+ \cap h_2^+ \cap \cdots \cap h_n^+ = \emptyset \iff$ there is a positive dependence among x_1, x_2, \ldots, x_n .