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Let I' = (V, E) be a graph. We'll allow loops and multiple edges until further notice, but
all graphs are finite. We write V' = {vy,...,v,}. An edge with endpoints v; and v; may be
written v;v; or e;;; if there are multiple edges this notation will not determine the edge, but
it is still useful to quickly show the endpoints. A connected graph with degree 2 at every
vertex is called a circle (not “cycle” as is all too common in graph theory; we have other
uses for the name “cycle”).

Definition 1. [{D:acyc} | The acyclotope A(I") is the convex hull of net degree vectors of
acyclic orientations of I'.

We have to define the terms in the definition.

An orientation of I' is an assignment of a direction to each edge. We indicate the direction
in two ways: by arrows at the ends of the edge e;;, one arrow pointing away from the vertex
and the other into the vertex. The oriented graph is notated [' and an oriented edge is
written €;;, meaning that v; is the tail and v; is the head. We assume the two ends of an
edge are distinguishable, even for a loop, so every edge has two orientations.

I want to distinguish between an oriented graph, where the orientation is variable, and
a directed graph (“digraph”), where the orientation is a given, not to be changed. The
questions are different. However, in many ways there is no difference; e.g., indegrees, et al.

The degree vector of I is d(I') = (d1(T'), ..., d,(I")) where d; = d(v;) = d;(I") is the number
of edges incident with v;, but a loop counts twice. (I should have said it’s the number of
edge ends incident with v;, but that’s unconventional. Assume I meant that.) The indegree
vector of an oriented graph T is d*(T') whose components are di = df (T') = d*(v;) = the

—

number of incoming edge ends at v;. The outdegree vector is d™(I'), defined similarly. The
net degree vector is d*(I') = d* (') — d—(T").

1. THE PERMUTAHEDRON

The permutahedron of degree n is a famous polytope. It is the convex hull of all permu-

tations of [n], i.e.,
I,y :=conv{(1™,2",...,n") : m € G, }.

Here G,, is the symmetric group of degree n (i.e., on n symbols, specifically on [n]).

Digression on permutations. The classical viewpoint is that a permutation is a rearrange-
ment of a linearly ordered set; this becomes the more abstract algebraic viewpoint that a
permutation is a self-bijection. A combinatorial view is that a permutation is a linear or-
dering. Let’s stay with the set [n], which is naturally ordered. Then the two viewpoints

converge. A bijection 7 : [n] — [n] can be written as the sequence (17,27,...,n"), known
as the one-line representation of m, and every such sequence comes from a unique bijection.
(I like to think of the connecting link as the two-line representation 1= or ... 7? ,

which explicitly represents any algebraic permutation and which, without the first line, is a
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combinatorial permutation. I write Perm,, for the set of permutation sequences and &,, for
the group of bijections. Thus, II,,_; := conv Perm,,.
I like to modify the permutahedron in two ways. Define

I, ,:=1I,1—1=conv{(0",17,...,[n—1]") : 7 € &,}
and
I =21 _,+ (n—11=conv{([-n+ 1", [-n+3]",...,[n—=1]") : 7 € &, }.
Here 1 denotes the all-1’s vector. The standard orthonormal basis vectors of R™ are by, ..., b,.

Theorem 1. [{T:perm} | The permutahedron is an n — 1-dimensional zonotope with vertex
set Perm,,. A zonotopal representation is given by

My = Y [ — by b —bl.

i<j€[n]

This is a special case of a general theorem about the acyclotope of a graph. First, let’s look
at the meaning of the transformations of Perm,, to Perm/, := {(0™,17,... [n—1]") : 7 € &,,}
and to Perm!, := {([-n+ 1", [-n+3|",...,[n—1]7) : 7 € &, }.

Proposition 2. [{P:movedPerm} | Perm!, = {d~(K,,) : K, is an acyclic orientation of K, },
and Perm”! = {d*(K,,) : K,, is an acyclic orientation of K,}.

Side note: A directed complete graph is known in graph theory as a tournament.

Proof. Theorem 6(a) implies that the acyclic orientations of K, are derived from linearly
ordering V. From that it is clear that the outdegree vector is a permutation of {0, 1,...,n—1}
and the net degree vector is a permutation of {—(n —1),—(n —3),...,n —3,n — 1}. O

Proof of Theorem 1. By Proposition 2, II” | = A(K,). Thus the theorem is a special case
of Theorem 7. O

2. AcycLic AND CycCLIC ORIENTATIONS

—

A cycle C is a circle C' oriented so that every edge goes the same way around C. If
C = epie12---€_1; where vg = v; (and [ > 0; a circle cannot have length 0), the cycle
is €p1€12 - -+ €)_1; or its reverse, €;;_1---€21€19. Note that each vertex has indegree 1 and
outdegree 1, so it has no source (a vertex with no outgoing edges) or sink (a vertex with no
incoming edges). (An isolated vertex is a source and a sink.)

An oriented graph is acyclic if it has no cycles. Otherwise it is (surprise!) cyclic. (It is
totally cyclic if every edge belongs to a cycle. Total cyclicity is dual to acyclicity, but I won’t
go into that.) An acyclically oriented graph cannot have loops, because an oriented loop is
already a cycle.

Suppose we partially order the vertex set V' by <, which is suitable for I' in the sense that
for every edge vw the vertices v and w are comparable. Then we orient I' by choosing the
orientation €;; if v; < v;. We call this the orientation implied by <. (Suitability is just the
requirement that ensures every edge is oriented. Note that we could assume < is a total
ordering, since every partial ordering extends to a total ordering.)

Lemma 3. [{L:po} | The orientation implied by a suitable partial ordering of V' is acyclic.
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Proof. Suppose there were a cycle egrei2 -+ - €1, where vy = v;. Then v9 < v; < -+ < v,
but by transitivity then vy < v; = vy, which violates reflexivity. ([l

There is a kind of converse.
Lemma 4. [{L:acyc} | Suppose T is acyclic. Define v, <5 v; if there is a (directed) path
from v; tov;. Then < is a partial ordering of V; for every edge there is one orientation €;;
such that v; <z v;; and that is the orientation of e;; in T

Furthermore, <z 1s the unique minimal partial ordering that tmplies the orientation r of
I'; that is, a partial ordering that implies T contains =<

Proof. NEEDS PROOF

Lemma 5. [{L:sinksource} | An acyclically oriented graph has a source and a sink.

Proof. Take the minimal associated partial ordering <. The sources are the minimal ele-
ments of <z and the sinks are the maximal elements of <. O

The Hasse diagram of a partially ordered set (V, <) is a directed graph if we orient all
edges upwards. The comparability graph of (V, <) is the graph on V' with an edge vw if and
only if v and w are comparable; by directing every edge upwards, that is, vl if v < w, we
get the comparability digraph Comp(<).

Theorem 6. [{T:ao} | Consider the orientations of a graph .

(a) An orientation is acyclic if and only if it is derived from a partial ordering of V.

(b) An orientation T is acyclic if and only if it satisfies Hasse(<) C T C Comp(<) for some
partial ordering < of V.

(c) Suppose T is an orientation of I. IfF 1s acyclic, there is no other orientation with the

same net degree vector. [fF 15 acyclic, there does exist another orientation with the same
net degree vector.

Proof of (a). The forward direction is Lemma 4. The backward direction is Lemma 3. [

Proof of (b). If T is acyclic, then <y is a partial ordering < with the property stated in the
theorem.
Conversely, if there exists such a partial ordering <, then MORE MORE MORE
O

Proof of (c). First, suppose T is acyclic. (We don’t exclude the possibility that I = T.)
Then I has a source. The indegree of a source v; is 0, so the net degree is —d(v;); conversely,
if d*(v;) = —d(vl) then v; is a source. Thus, we can identify a source from d*(T').

Now define I := '\ v;. We can predict the net degree vector of I from that of I’ and the
knowledge that v; is a source; specifically,

45 () = d]i(li) if there is no edge v;v;,
dj[(l“) — 1 if there is an edge v;v;,

since any edge v;v; is oriented towards v;. It follows that, if no other orientation of IV = I"\ v;
has the same net degree vector as I, then the orientation I' is determined. Hence, by

induction on n, [ is determined by its net degree vector.
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For the second part, suppose [ has a cycle €y1€12 - - - €,_1;. Define [ to be ' with the cycle
edges reversed. That does not change the net degree vector; hence d*(I") = d*(vG’). O

The proof shows that we can identify all sources (and similarly all sinks) of an orientation
from the net degree vector; by repeatedly stripping them out, we can tell algorithmically
from d*(I") whether T is cyclic or acyclic. I don’t know whether that can be done more
directly.

3. THE ACYCLOTOPE IS A ZONOTOPE

A convex polytope is the convex closure of a finite set of points: P = conv(S) where
S C R” is finite. A vertex is a point p € S that is necessary to get the right convex hull; i.e.,
conv(S \ p) C P. (This is not the definition but it’s a property proved in courses on convex
polytopes.) The vertex set of P is denoted by Vert(P).

We assign to an edge e;; the vector z(e;;) := b; — b; in R”, the vertex space, where (as
before) by, ...,b, is the standard orthonormal basis. Since we didn’t orient the edge, this
definition allows either b; — b; or b; — b;; that won’t matter. If it does matter, we orient the
edge and define z(€;;) := b; — b;. (Note that a loop gets the zero vector.)

Theorem 7. [{T:acyclotope} | The acyclotope A(T") has the following properties.
(a) A= e emici—2(ei); +aley)].
(b) A = conv{d*(T) : T is an orientation of T'}.
(c) Vert(A) = {d*(T) : T is an acyclic orientation of T'}.
Part (i) shows that the acyclotope is a zonotope.
Proof. We begin with a definition. Let
A" := conv{d*(T) : all orientations ['}.
We'll prove some properties of A" and that A = A’.
Lemma 3.1. [{L:A’zono} | A":= %", [—x(ei;), x(ei;)].
Proof. O
Lemma 3.2. [{L:A’zono} | If T is cyclic, then d*(T') is not a vertex of A'.
Proof. O
Now, two lemmas about A.
Lemma 3.3. [{L:acyclicvert} | If T is acyclic, then d*(T) is a vertez of A(T).

Proof. Since T is acyclic, it has a source. The indegree of a source v; is 0, so the net degree
is —d(v;); conversely, if d*(v;) = —d(v;), then v; is a source. Thus, we can identify a source
from d*(T).

MORE MORE MORE

Lemma 3.4. [{L:cyclicnovert} | If T is cyclic, then d=(T) is not a vertex of A(T).
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Proof. Suppose [ has a cycle €y1€12---€_1;. Define [ to be T with reoriented edge €7g

instead of €y;. Then .
(d;t(F) lf V; 7& Vo, V1,
dE(T) = dFT) +2  if vy = vy,

(D) =2 ifv; =
Define T to be T' with reoriented edges €a1, ..., €,-1; then
(dli(f) if v; # v, v1,

—

dEC) = dF () =2 if vy = v,
di(F)+2 if V; = V1.

Since d*(I’) = d*(I") + d*(I"), the net degree vector of T is not a vertex of A(T'). O

The proof of Theorem 7 continues ...
MORE MORE MROE
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