The Acyclotope by Thomas Zaslavsky April 5, 2013

Let $\Gamma = (V, E)$ be a graph. We'll allow loops and multiple edges until further notice, but all graphs are finite. We write $V = \{v_1, \ldots, v_n\}$. An edge with endpoints v_i and v_j may be written $v_i v_j$ or e_{ij} ; if there are multiple edges this notation will not determine the edge, but it is still useful to quickly show the endpoints. A connected graph with degree 2 at every vertex is called a *circle* (not "cycle" as is all too common in graph theory; we have other uses for the name "cycle").

Definition 1. [{D:acyc}] The acyclotope $A(\Gamma)$ is the convex hull of net degree vectors of acyclic orientations of Γ .

We have to define the terms in the definition.

An orientation of Γ is an assignment of a direction to each edge. We indicate the direction in two ways: by arrows at the ends of the edge e_{ij} , one arrow pointing away from the vertex and the other into the vertex. The oriented graph is notated $\vec{\Gamma}$ and an oriented edge is written \vec{e}_{ij} , meaning that v_i is the tail and v_j is the head. We assume the two ends of an edge are distinguishable, even for a loop, so every edge has two orientations.

I want to distinguish between an *oriented graph*, where the orientation is variable, and a directed graph ("digraph"), where the orientation is a given, not to be changed. The questions are different. However, in many ways there is no difference; e.g., indegrees, et al.

The degree vector of Γ is $d(\Gamma) = (d_1(\Gamma), \ldots, d_n(\Gamma))$ where $d_i = d(v_i) = d_i(\Gamma)$ is the number of edges incident with v_i , but a loop counts twice. (I should have said it's the number of edge ends incident with v_i , but that's unconventional. Assume I meant that.) The indegree vector of an oriented graph $\vec{\Gamma}$ is $d^+(\vec{\Gamma})$ whose components are $d_i^+ = d_i^+(\vec{\Gamma}) = d^+(v_i) =$ the number of incoming edge ends at v_i . The outdegree vector is $d^-(\vec{\Gamma})$, defined similarly. The net degree vector is $d^{\pm}(\vec{\Gamma}) = d^+(\vec{\Gamma}) - d^-(\vec{\Gamma})$.

1. The Permutahedron

The *permutahedron* of degree n is a famous polytope. It is the convex hull of all permutations of [n], i.e.,

$$\Pi_{n-1} := \operatorname{conv}\{(1^{\pi}, 2^{\pi}, \dots, n^{\pi}) : \pi \in \mathfrak{S}_n\}.$$

Here \mathfrak{S}_n is the symmetric group of degree *n* (i.e., on *n* symbols, specifically on [n]).

Digression on permutations. The classical viewpoint is that a permutation is a rearrangement of a linearly ordered set; this becomes the more abstract algebraic viewpoint that a permutation is a self-bijection. A combinatorial view is that a permutation is a linear ordering. Let's stay with the set [n], which is naturally ordered. Then the two viewpoints converge. A bijection $\pi : [n] \to [n]$ can be written as the sequence $(1^{\pi}, 2^{\pi}, \ldots, n^{\pi})$, known as the one-line representation of π , and every such sequence comes from a unique bijection. (I like to think of the connecting link as the two-line representation $\begin{pmatrix} 1 & 2 & \cdots & n \\ 1^{\pi} & 2^{\pi} & \cdots & n^{\pi} \end{pmatrix}$, which explicitly represents any algebraic permutation and which, without the first line, is a combinatorial permutation. I write Perm_n for the set of permutation sequences and \mathfrak{S}_n for the group of bijections. Thus, $\Pi_{n-1} := \operatorname{conv} \operatorname{Perm}_n$.

I like to modify the permutahedron in two ways. Define

$$\Pi'_{n-1} := \Pi_{n-1} - \mathbf{1} = \operatorname{conv}\{(0^{\pi}, 1^{\pi}, \dots, [n-1]^{\pi}) : \pi \in \mathfrak{S}_n\}$$

and

$$\Pi_{n-1}'' := 2\Pi_{n-1}' + (n-1)\mathbf{1} = \operatorname{conv}\{([-n+1]^{\pi}, [-n+3]^{\pi}, \dots, [n-1]^{\pi}) : \pi \in \mathfrak{S}_n\}.$$

Here **1** denotes the all-1's vector. The standard orthonormal basis vectors of \mathbb{R}^n are b_1, \ldots, b_n .

Theorem 1. [{T:perm}] The permutahedron is an n-1-dimensional zonotope with vertex set Perm_n. A zonotopal representation is given by

$$\Pi_{n-1}'' = \sum_{i < j \in [n]} [b_i - b_j, b_j - b_i].$$

This is a special case of a general theorem about the acyclotope of a graph. First, let's look at the meaning of the transformations of Perm_n to Perm'_n := { $(0^{\pi}, 1^{\pi}, \ldots, [n-1]^{\pi}) : \pi \in \mathfrak{S}_n$ } and to Perm''_n := { $([-n+1]^{\pi}, [-n+3]^{\pi}, \ldots, [n-1]^{\pi}) : \pi \in \mathfrak{S}_n$ }.

Proposition 2. [{P:movedPerm}] Perm'_n = { $d^-(\vec{K}_n) : \vec{K}_n$ is an acyclic orientation of K_n }, and Perm''_n = { $d^{\pm}(\vec{K}_n) : \vec{K}_n$ is an acyclic orientation of K_n }.

Side note: A directed complete graph is known in graph theory as a *tournament*.

Proof. Theorem 6(a) implies that the acyclic orientations of K_n are derived from linearly ordering V. From that it is clear that the outdegree vector is a permutation of $\{0, 1, \ldots, n-1\}$ and the net degree vector is a permutation of $\{-(n-1), -(n-3), \ldots, n-3, n-1\}$.

Proof of Theorem 1. By Proposition 2, $\Pi_{n-1}'' = A(K_n)$. Thus the theorem is a special case of Theorem 7.

2. Acyclic and Cyclic Orientations

A cycle \vec{C} is a circle C oriented so that every edge goes the same way around C. If $C = e_{01}e_{12}\cdots e_{l-1,l}$ where $v_0 = v_l$ (and l > 0; a circle cannot have length 0), the cycle is $\vec{e}_{01}\vec{e}_{12}\cdots\vec{e}_{l-1,l}$ or its reverse, $\vec{e}_{l,l-1}\cdots\vec{e}_{21}\vec{e}_{10}$. Note that each vertex has indegree 1 and outdegree 1, so it has no source (a vertex with no outgoing edges) or sink (a vertex with no incoming edges). (An isolated vertex is a source and a sink.)

An oriented graph is *acyclic* if it has no cycles. Otherwise it is (surprise!) *cyclic*. (It is *totally cyclic* if every edge belongs to a cycle. Total cyclicity is dual to acyclicity, but I won't go into that.) An acyclically oriented graph cannot have loops, because an oriented loop is already a cycle.

Suppose we partially order the vertex set V by \prec , which is *suitable for* Γ in the sense that for every edge vw the vertices v and w are comparable. Then we orient Γ by choosing the orientation \vec{e}_{ij} if $v_i \prec v_j$. We call this the orientation *implied by* \prec . (Suitability is just the requirement that ensures every edge is oriented. Note that we could assume \prec is a total ordering, since every partial ordering extends to a total ordering.)

Lemma 3. [{L:po}] The orientation implied by a suitable partial ordering of V is acyclic.

Proof. Suppose there were a cycle $e_{01}e_{12}\cdots e_{l-1,l}$, where $v_0 = v_l$. Then $v_0 \prec v_1 \prec \cdots \prec v_l$, but by transitivity then $v_0 \prec v_l = v_0$, which violates reflexivity.

There is a kind of converse.

Lemma 4. [{L:acyc}] Suppose $\vec{\Gamma}$ is acyclic. Define $v_i \prec_{\vec{\Gamma}} v_j$ if there is a (directed) path from v_i to v_j . Then $\prec_{\vec{\Gamma}}$ is a partial ordering of V; for every edge there is one orientation \vec{e}_{ij} such that $v_i \prec_{\vec{\Gamma}} v_j$; and that is the orientation of e_{ij} in $\vec{\Gamma}$.

Furthermore, $\prec_{\vec{\Gamma}}$ is the unique minimal partial ordering that implies the orientation $\vec{\Gamma}$ of Γ ; that is, a partial ordering that implies $\vec{\Gamma}$ contains $\prec_{\vec{\Gamma}}$.

Proof. NEEDS PROOF

Lemma 5. [{L:sinksource}] An acyclically oriented graph has a source and a sink.

Proof. Take the minimal associated partial ordering $\prec_{\vec{\Gamma}}$. The sources are the minimal elements of $\prec_{\vec{\Gamma}}$ and the sinks are the maximal elements of $\prec_{\vec{\Gamma}}$.

The Hasse diagram of a partially ordered set (V, <) is a directed graph if we orient all edges upwards. The *comparability graph* of (V, <) is the graph on V with an edge vw if and only if v and w are comparable; by directing every edge upwards, that is, \overrightarrow{vw} if v < w, we get the *comparability digraph* Comp(<).

Theorem 6. [{T:ao}] Consider the orientations of a graph Γ .

- (a) An orientation is acyclic if and only if it is derived from a partial ordering of V.
- (b) An orientation $\vec{\Gamma}$ is acyclic if and only if it satisfies $\operatorname{Hasse}(\prec) \subseteq \vec{\Gamma} \subseteq \operatorname{Comp}(\prec)$ for some partial ordering \prec of V.
- (c) Suppose $\vec{\Gamma}$ is an orientation of Γ . If $\vec{\Gamma}$ is acyclic, there is no other orientation with the same net degree vector. If $\vec{\Gamma}$ is acyclic, there does exist another orientation with the same net degree vector.

Proof of (a). The forward direction is Lemma 4. The backward direction is Lemma 3. \Box

Proof of (b). If $\vec{\Gamma}$ is acyclic, then $\prec_{\vec{\Gamma}}$ is a partial ordering \prec with the property stated in the theorem.

Conversely, if there exists such a partial ordering \prec , then MORE MORE MORE

Proof of (c). First, suppose $\vec{\Gamma}$ is acyclic. (We don't exclude the possibility that $\vec{\Gamma}' = \vec{\Gamma}$.) Then $\vec{\Gamma}$ has a source. The indegree of a source v_i is 0, so the net degree is $-d(v_i)$; conversely, if $d^{\pm}(v_i) = -d(v_i)$, then v_i is a source. Thus, we can identify a source from $d^{\pm}(\vec{\Gamma})$.

Now define $\vec{\Gamma}' := \vec{\Gamma} \setminus v_i$. We can predict the net degree vector of $\vec{\Gamma}'$ from that of $\vec{\Gamma}$ and the knowledge that v_i is a source; specifically,

$$d_j^{\pm}(\vec{\Gamma}') = \begin{cases} d_j^{\pm}(\vec{\Gamma}) & \text{if there is no edge } v_i v_j, \\ d_j^{\pm}(\vec{\Gamma}) - 1 & \text{if there is an edge } v_i v_j, \end{cases}$$

since any edge $v_i v_j$ is oriented towards v_j . It follows that, if no other orientation of $\Gamma' = \Gamma \setminus v_i$ has the same net degree vector as $\vec{\Gamma}'$, then the orientation $\vec{\Gamma}$ is determined. Hence, by induction on n, $\vec{\Gamma}$ is determined by its net degree vector.

For the second part, suppose $\vec{\Gamma}$ has a cycle $\vec{e}_{01}\vec{e}_{12}\cdots\vec{e}_{l-1,l}$. Define $\vec{\Gamma}'$ to be $\vec{\Gamma}$ with the cycle edges reversed. That does not change the net degree vector; hence $d^{\pm}(\vec{\Gamma}) = d^{\pm}(vG')$.

The proof shows that we can identify all sources (and similarly all sinks) of an orientation from the net degree vector; by repeatedly stripping them out, we can tell algorithmically from $d^{\pm}(\vec{\Gamma})$ whether $\vec{\Gamma}$ is cyclic or acyclic. I don't know whether that can be done more directly.

3. The Acyclotope is a Zonotope

A convex polytope is the convex closure of a finite set of points: $P = \operatorname{conv}(S)$ where $S \subset \mathbb{R}^n$ is finite. A vertex is a point $p \in S$ that is necessary to get the right convex hull; i.e., $\operatorname{conv}(S \setminus p) \subset P$. (This is not the definition but it's a property proved in courses on convex polytopes.) The vertex set of P is denoted by $\operatorname{Vert}(P)$.

We assign to an edge e_{ij} the vector $x(e_{ij}) := b_j - b_i$ in \mathbb{R}^n , the vertex space, where (as before) b_1, \ldots, b_n is the standard orthonormal basis. Since we didn't orient the edge, this definition allows either $b_j - b_i$ or $b_i - b_j$; that won't matter. If it does matter, we orient the edge and define $x(\vec{e}_{ij}) := b_j - b_i$. (Note that a loop gets the zero vector.)

Theorem 7. [{T:acyclotope}] The acyclotope $A(\Gamma)$ has the following properties. (a) $A = \sum_{e_{ij} \in E: i < j} [-x(e_{ij}), +x(e_{ij})].$

(b) $A = \operatorname{conv} \{ d^{\pm}(\vec{\Gamma}) : \vec{\Gamma} \text{ is an orientation of } \Gamma \}.$

(c) $\operatorname{Vert}(A) = \{ d^{\pm}(\vec{\Gamma}) : \vec{\Gamma} \text{ is an acyclic orientation of } \Gamma \}.$

Part (i) shows that the acyclotope is a zonotope.

Proof. We begin with a definition. Let

 $A' := \operatorname{conv} \{ d^{\pm}(\vec{\Gamma}) : \text{all orientations } \vec{\Gamma} \}.$

We'll prove some properties of A' and that A = A'.

Lemma 3.1. [{L:A'zono}] $A' := \sum_{e_{ij}} [-x(e_{ij}), x(e_{ij})].$

Proof.

Lemma 3.2. [{L:A'zono}]] If $\vec{\Gamma}$ is cyclic, then $d^{\pm}(\vec{\Gamma})$ is not a vertex of A'.

Proof.

Now, two lemmas about A.

Lemma 3.3. [{L:acyclicvert}]] If $\vec{\Gamma}$ is acyclic, then $d^{\pm}(\vec{\Gamma})$ is a vertex of $A(\Gamma)$.

Proof. Since $\vec{\Gamma}$ is acyclic, it has a source. The indegree of a source v_i is 0, so the net degree is $-d(v_i)$; conversely, if $d^{\pm}(v_i) = -d(v_i)$, then v_i is a source. Thus, we can identify a source from $d^{\pm}(\vec{\Gamma})$.

MORE MORE MORE

Lemma 3.4. [{L:cyclicnovert}] If $\vec{\Gamma}$ is cyclic, then $d^{\pm}(\vec{\Gamma})$ is not a vertex of $A(\Gamma)$.

Proof. Suppose $\vec{\Gamma}$ has a cycle $\vec{e}_{01}\vec{e}_{12}\cdots\vec{e}_{l-1,l}$. Define $\vec{\Gamma'}$ to be $\vec{\Gamma}$ with reoriented edge \vec{e}_{10} instead of \vec{e}_{01} . Then

$$d_i^{\pm}(\vec{\Gamma}') = \begin{cases} d_i^{\pm}(\vec{\Gamma}) & \text{if } v_i \neq v_0, v_1, \\ d_i^{\pm}(\vec{\Gamma}) + 2 & \text{if } v_i = v_0, \\ d_i^{\pm}(\vec{\Gamma}) - 2 & \text{if } v_i = v_1. \end{cases}$$

Define $\vec{\Gamma}''$ to be $\vec{\Gamma}$ with reoriented edges $\vec{e}_{21}, \ldots, \vec{e}_{l,l-1}$; then

$$d_i^{\pm}(\vec{\Gamma}'') = \begin{cases} d_i^{\pm}(\vec{\Gamma}) & \text{if } v_i \neq v_0, v_1, \\ d_i^{\pm}(\vec{\Gamma}) - 2 & \text{if } v_i = v_0, \\ d_i^{\pm}(\vec{\Gamma}) + 2 & \text{if } v_i = v_1. \end{cases}$$

Since $d^{\pm}(\vec{\Gamma}) = d^{\pm}(\vec{\Gamma}') + d^{\pm}(\vec{\Gamma}'')$, the net degree vector of $\vec{\Gamma}$ is not a vertex of $A(\Gamma)$.

The proof of Theorem 7 continues \ldots MORE MORE MROE

References

- Thomas Zaslavsky, Signed graph coloring. Discrete Math. 39 (1982), 215–228. MR 84h:05050a. Zbl 487.05027.
- [2] Thomas Zaslavsky, Orientation of signed graphs. European J. Combin. 12 (1991), 361–375. MR 93a:05065. Zbl 761.05095.