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Let Γ = (V,E) be a graph. We’ll allow loops and multiple edges until further notice, but
all graphs are finite. We write V = {v1, . . . , vn}. An edge with endpoints vi and vj may be
written vivj or eij; if there are multiple edges this notation will not determine the edge, but
it is still useful to quickly show the endpoints. A connected graph with degree 2 at every
vertex is called a circle (not “cycle” as is all too common in graph theory; we have other
uses for the name “cycle”).

Definition 1. [{D:acyc} ] The acyclotope A(Γ) is the convex hull of net degree vectors of
acyclic orientations of Γ.

We have to define the terms in the definition.
An orientation of Γ is an assignment of a direction to each edge. We indicate the direction

in two ways: by arrows at the ends of the edge eij, one arrow pointing away from the vertex

and the other into the vertex. The oriented graph is notated ~Γ and an oriented edge is
written ~eij, meaning that vi is the tail and vj is the head. We assume the two ends of an
edge are distinguishable, even for a loop, so every edge has two orientations.

I want to distinguish between an oriented graph, where the orientation is variable, and
a directed graph (“digraph”), where the orientation is a given, not to be changed. The
questions are different. However, in many ways there is no difference; e.g., indegrees, et al.

The degree vector of Γ is d(Γ) = (d1(Γ), . . . , dn(Γ)) where di = d(vi) = di(Γ) is the number
of edges incident with vi, but a loop counts twice. (I should have said it’s the number of
edge ends incident with vi, but that’s unconventional. Assume I meant that.) The indegree

vector of an oriented graph ~Γ is d+(~Γ) whose components are d+
i = d+

i (~Γ) = d+(vi) = the

number of incoming edge ends at vi. The outdegree vector is d−(~Γ), defined similarly. The

net degree vector is d±(~Γ) = d+(~Γ)− d−(~Γ).

1. The Permutahedron

The permutahedron of degree n is a famous polytope. It is the convex hull of all permu-
tations of [n], i.e.,

Πn−1 := conv{(1π, 2π, . . . , nπ) : π ∈ Sn}.
Here Sn is the symmetric group of degree n (i.e., on n symbols, specifically on [n]).

Digression on permutations. The classical viewpoint is that a permutation is a rearrange-
ment of a linearly ordered set; this becomes the more abstract algebraic viewpoint that a
permutation is a self-bijection. A combinatorial view is that a permutation is a linear or-
dering. Let’s stay with the set [n], which is naturally ordered. Then the two viewpoints
converge. A bijection π : [n] → [n] can be written as the sequence (1π, 2π, . . . , nπ), known
as the one-line representation of π, and every such sequence comes from a unique bijection.

(I like to think of the connecting link as the two-line representation

(
1 2 · · · n
1π 2π · · · nπ

)
,

which explicitly represents any algebraic permutation and which, without the first line, is a
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combinatorial permutation. I write Permn for the set of permutation sequences and Sn for
the group of bijections. Thus, Πn−1 := conv Permn.

I like to modify the permutahedron in two ways. Define

Π′n−1 := Πn−1 − 1 = conv{(0π, 1π, . . . , [n− 1]π) : π ∈ Sn}
and

Π′′n−1 := 2Π′n−1 + (n− 1)1 = conv{([−n+ 1]π, [−n+ 3]π, . . . , [n− 1]π) : π ∈ Sn}.
Here 1 denotes the all-1’s vector. The standard orthonormal basis vectors of Rn are b1, . . . , bn.

Theorem 1. [{T:perm} ] The permutahedron is an n− 1-dimensional zonotope with vertex
set Permn. A zonotopal representation is given by

Π′′n−1 =
∑

i<j∈[n]

[bi − bj, bj − bi].

This is a special case of a general theorem about the acyclotope of a graph. First, let’s look
at the meaning of the transformations of Permn to Perm′n := {(0π, 1π, . . . , [n−1]π) : π ∈ Sn}
and to Perm′′n := {([−n+ 1]π, [−n+ 3]π, . . . , [n− 1]π) : π ∈ Sn}.

Proposition 2. [{P:movedPerm} ] Perm′n = {d−( ~Kn) : ~Kn is an acyclic orientation of Kn},
and Perm′′n = {d±( ~Kn) : ~Kn is an acyclic orientation of Kn}.

Side note: A directed complete graph is known in graph theory as a tournament.

Proof. Theorem 6(a) implies that the acyclic orientations of Kn are derived from linearly
ordering V . From that it is clear that the outdegree vector is a permutation of {0, 1, . . . , n−1}
and the net degree vector is a permutation of {−(n− 1),−(n− 3), . . . , n− 3, n− 1}. �

Proof of Theorem 1. By Proposition 2, Π′′n−1 = A(Kn). Thus the theorem is a special case
of Theorem 7. �

2. Acyclic and Cyclic Orientations

A cycle ~C is a circle C oriented so that every edge goes the same way around C. If
C = e01e12 · · · el−1,l where v0 = vl (and l > 0; a circle cannot have length 0), the cycle
is ~e01~e12 · · ·~el−1,l or its reverse, ~el,l−1 · · ·~e21~e10. Note that each vertex has indegree 1 and
outdegree 1, so it has no source (a vertex with no outgoing edges) or sink (a vertex with no
incoming edges). (An isolated vertex is a source and a sink.)

An oriented graph is acyclic if it has no cycles. Otherwise it is (surprise!) cyclic. (It is
totally cyclic if every edge belongs to a cycle. Total cyclicity is dual to acyclicity, but I won’t
go into that.) An acyclically oriented graph cannot have loops, because an oriented loop is
already a cycle.

Suppose we partially order the vertex set V by ≺, which is suitable for Γ in the sense that
for every edge vw the vertices v and w are comparable. Then we orient Γ by choosing the
orientation ~eij if vi ≺ vj. We call this the orientation implied by ≺. (Suitability is just the
requirement that ensures every edge is oriented. Note that we could assume ≺ is a total
ordering, since every partial ordering extends to a total ordering.)

Lemma 3. [{L:po} ] The orientation implied by a suitable partial ordering of V is acyclic.
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Proof. Suppose there were a cycle e01e12 · · · el−1,l, where v0 = vl. Then v0 ≺ v1 ≺ · · · ≺ vl,
but by transitivity then v0 ≺ vl = v0, which violates reflexivity. �

There is a kind of converse.

Lemma 4. [{L:acyc} ] Suppose ~Γ is acyclic. Define vi ≺~Γ vj if there is a (directed) path
from vi to vj. Then ≺~Γ is a partial ordering of V ; for every edge there is one orientation ~eij
such that vi ≺~Γ vj; and that is the orientation of eij in ~Γ.

Furthermore, ≺~Γ is the unique minimal partial ordering that implies the orientation ~Γ of

Γ; that is, a partial ordering that implies ~Γ contains ≺~Γ.

Proof. NEEDS PROOF
�

Lemma 5. [{L:sinksource} ] An acyclically oriented graph has a source and a sink.

Proof. Take the minimal associated partial ordering ≺~Γ. The sources are the minimal ele-
ments of ≺~Γ and the sinks are the maximal elements of ≺~Γ. �

The Hasse diagram of a partially ordered set (V,<) is a directed graph if we orient all
edges upwards. The comparability graph of (V,<) is the graph on V with an edge vw if and
only if v and w are comparable; by directing every edge upwards, that is, −→vw if v < w, we
get the comparability digraph Comp(<).

Theorem 6. [{T:ao} ] Consider the orientations of a graph Γ.

(a) An orientation is acyclic if and only if it is derived from a partial ordering of V .

(b) An orientation ~Γ is acyclic if and only if it satisfies Hasse(≺) ⊆ ~Γ ⊆ Comp(≺) for some
partial ordering ≺ of V .

(c) Suppose ~Γ is an orientation of Γ. If ~Γ is acyclic, there is no other orientation with the

same net degree vector. If ~Γ is acyclic, there does exist another orientation with the same
net degree vector.

Proof of (a). The forward direction is Lemma 4. The backward direction is Lemma 3. �

Proof of (b). If ~Γ is acyclic, then ≺~Γ is a partial ordering ≺ with the property stated in the
theorem.

Conversely, if there exists such a partial ordering ≺, then MORE MORE MORE
�

Proof of (c). First, suppose ~Γ is acyclic. (We don’t exclude the possibility that ~Γ′ = ~Γ.)

Then ~Γ has a source. The indegree of a source vi is 0, so the net degree is −d(vi); conversely,

if d±(vi) = −d(vi), then vi is a source. Thus, we can identify a source from d±(~Γ).

Now define ~Γ′ := ~Γ \ vi. We can predict the net degree vector of ~Γ′ from that of ~Γ and the
knowledge that vi is a source; specifically,

d±j (~Γ′) =

{
d±j (~Γ) if there is no edge vivj,

d±j (~Γ)− 1 if there is an edge vivj,

since any edge vivj is oriented towards vj. It follows that, if no other orientation of Γ′ = Γ\vi
has the same net degree vector as ~Γ′, then the orientation ~Γ is determined. Hence, by
induction on n, ~Γ is determined by its net degree vector.
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For the second part, suppose ~Γ has a cycle ~e01~e12 · · ·~el−1,l. Define ~Γ′ to be ~Γ with the cycle

edges reversed. That does not change the net degree vector; hence d±(~Γ) = d±(vG′). �

The proof shows that we can identify all sources (and similarly all sinks) of an orientation
from the net degree vector; by repeatedly stripping them out, we can tell algorithmically
from d±(~Γ) whether ~Γ is cyclic or acyclic. I don’t know whether that can be done more
directly.

3. The Acyclotope is a Zonotope

A convex polytope is the convex closure of a finite set of points: P = conv(S) where
S ⊂ Rn is finite. A vertex is a point p ∈ S that is necessary to get the right convex hull; i.e.,
conv(S \ p) ⊂ P . (This is not the definition but it’s a property proved in courses on convex
polytopes.) The vertex set of P is denoted by Vert(P ).

We assign to an edge eij the vector x(eij) := bj − bi in Rn, the vertex space, where (as
before) b1, . . . , bn is the standard orthonormal basis. Since we didn’t orient the edge, this
definition allows either bj − bi or bi − bj; that won’t matter. If it does matter, we orient the
edge and define x(~eij) := bj − bi. (Note that a loop gets the zero vector.)

Theorem 7. [{T:acyclotope} ] The acyclotope A(Γ) has the following properties.

(a) A =
∑

eij∈E;i<j[−x(eij),+x(eij)].

(b) A = conv{d±(~Γ) : ~Γ is an orientation of Γ}.
(c) Vert(A) = {d±(~Γ) : ~Γ is an acyclic orientation of Γ}.

Part (i) shows that the acyclotope is a zonotope.

Proof. We begin with a definition. Let

A′ := conv{d±(~Γ) : all orientations ~Γ}.
We’ll prove some properties of A′ and that A = A′.

Lemma 3.1. [{L:A’zono} ] A′ :=
∑

eij
[−x(eij), x(eij)].

Proof. �

Lemma 3.2. [{L:A’zono} ] If ~Γ is cyclic, then d±(~Γ) is not a vertex of A′.

Proof. �

Now, two lemmas about A.

Lemma 3.3. [{L:acyclicvert} ] If ~Γ is acyclic, then d±(~Γ) is a vertex of A(Γ).

Proof. Since ~Γ is acyclic, it has a source. The indegree of a source vi is 0, so the net degree
is −d(vi); conversely, if d±(vi) = −d(vi), then vi is a source. Thus, we can identify a source

from d±(~Γ).
MORE MORE MORE

�

Lemma 3.4. [{L:cyclicnovert} ] If ~Γ is cyclic, then d±(~Γ) is not a vertex of A(Γ).
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Proof. Suppose ~Γ has a cycle ~e01~e12 · · ·~el−1,l. Define ~Γ′ to be ~Γ with reoriented edge ~e10

instead of ~e01. Then

d±i (~Γ′) =


d±i (~Γ) if vi 6= v0, v1,

d±i (~Γ) + 2 if vi = v0,

d±i (~Γ)− 2 if vi = v1.

Define ~Γ′′ to be ~Γ with reoriented edges ~e21, . . . , ~el,l−1; then

d±i (~Γ′′) =


d±i (~Γ) if vi 6= v0, v1,

d±i (~Γ)− 2 if vi = v0,

d±i (~Γ) + 2 if vi = v1.

Since d±(~Γ) = d±(~Γ′) + d±(~Γ′′), the net degree vector of ~Γ is not a vertex of A(Γ). �

The proof of Theorem 7 continues ...
MORE MORE MROE

�
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