The Acyclotope

by Thomas Zaslavsky
April 5, 2013

Let $\Gamma=(V, E)$ be a graph. We'll allow loops and multiple edges until further notice, but all graphs are finite. We write $V=\left\{v_{1}, \ldots, v_{n}\right\}$. An edge with endpoints v_{i} and v_{j} may be written $v_{i} v_{j}$ or $e_{i j}$; if there are multiple edges this notation will not determine the edge, but it is still useful to quickly show the endpoints. A connected graph with degree 2 at every vertex is called a circle (not "cycle" as is all too common in graph theory; we have other uses for the name "cycle").

Definition 1. [\{D:acyc \}] The acyclotope $A(\Gamma)$ is the convex hull of net degree vectors of acyclic orientations of Γ.

We have to define the terms in the definition.
An orientation of Γ is an assignment of a direction to each edge. We indicate the direction in two ways: by arrows at the ends of the edge $e_{i j}$, one arrow pointing away from the vertex and the other into the vertex. The oriented graph is notated $\vec{\Gamma}$ and an oriented edge is written $\vec{e}_{i j}$, meaning that v_{i} is the tail and v_{j} is the head. We assume the two ends of an edge are distinguishable, even for a loop, so every edge has two orientations.

I want to distinguish between an oriented graph, where the orientation is variable, and a directed graph ("digraph"), where the orientation is a given, not to be changed. The questions are different. However, in many ways there is no difference; e.g., indegrees, et al.

The degree vector of Γ is $d(\Gamma)=\left(d_{1}(\Gamma), \ldots, d_{n}(\Gamma)\right)$ where $d_{i}=d\left(v_{i}\right)=d_{i}(\Gamma)$ is the number of edges incident with v_{i}, but a loop counts twice. (I should have said it's the number of edge ends incident with v_{i}, but that's unconventional. Assume I meant that.) The indegree vector of an oriented graph $\vec{\Gamma}$ is $d^{+}(\vec{\Gamma})$ whose components are $d_{i}^{+}=d_{i}^{+}(\vec{\Gamma})=d^{+}\left(v_{i}\right)=$ the number of incoming edge ends at v_{i}. The outdegree vector is $d^{-}(\vec{\Gamma})$, defined similarly. The net degree vector is $d^{ \pm}(\vec{\Gamma})=d^{+}(\vec{\Gamma})-d^{-}(\vec{\Gamma})$.

1. The Permutahedron

The permutahedron of degree n is a famous polytope. It is the convex hull of all permutations of $[n]$, i.e.,

$$
\Pi_{n-1}:=\operatorname{conv}\left\{\left(1^{\pi}, 2^{\pi}, \ldots, n^{\pi}\right): \pi \in \mathfrak{S}_{n}\right\}
$$

Here \mathfrak{S}_{n} is the symmetric group of degree n (i.e., on n symbols, specifically on $[n]$).
Digression on permutations. The classical viewpoint is that a permutation is a rearrangement of a linearly ordered set; this becomes the more abstract algebraic viewpoint that a permutation is a self-bijection. A combinatorial view is that a permutation is a linear ordering. Let's stay with the set $[n]$, which is naturally ordered. Then the two viewpoints converge. A bijection $\pi:[n] \rightarrow[n]$ can be written as the sequence $\left(1^{\pi}, 2^{\pi}, \ldots, n^{\pi}\right)$, known as the one-line representation of π, and every such sequence comes from a unique bijection. (I like to think of the connecting link as the two-line representation $\left(\begin{array}{cccc}1 & 2 & \cdots & n \\ 1^{\pi} & 2^{\pi} & \cdots & n^{\pi}\end{array}\right)$, which explicitly represents any algebraic permutation and which, without the first line, is a
combinatorial permutation. I write Perm $_{n}$ for the set of permutation sequences and \mathfrak{S}_{n} for the group of bijections. Thus, $\Pi_{n-1}:=\operatorname{conv}$ Perm $_{n}$.

I like to modify the permutahedron in two ways. Define

$$
\Pi_{n-1}^{\prime}:=\Pi_{n-1}-\mathbf{1}=\operatorname{conv}\left\{\left(0^{\pi}, 1^{\pi}, \ldots,[n-1]^{\pi}\right): \pi \in \mathfrak{S}_{n}\right\}
$$

and

$$
\Pi_{n-1}^{\prime \prime}:=2 \Pi_{n-1}^{\prime}+(n-1) \mathbf{1}=\operatorname{conv}\left\{\left([-n+1]^{\pi},[-n+3]^{\pi}, \ldots,[n-1]^{\pi}\right): \pi \in \mathfrak{S}_{n}\right\}
$$

Here $\mathbf{1}$ denotes the all-1's vector. The standard orthonormal basis vectors of \mathbb{R}^{n} are b_{1}, \ldots, b_{n}.
Theorem 1. [\{T:perm\}] The permutahedron is an n-1-dimensional zonotope with vertex set Perm_{n}. A zonotopal representation is given by

$$
\Pi_{n-1}^{\prime \prime}=\sum_{i<j \in[n]}\left[b_{i}-b_{j}, b_{j}-b_{i}\right]
$$

This is a special case of a general theorem about the acyclotope of a graph. First, let's look at the meaning of the transformations of Perm_{n} to $\operatorname{Perm}_{n}^{\prime}:=\left\{\left(0^{\pi}, 1^{\pi}, \ldots,[n-1]^{\pi}\right): \pi \in \mathfrak{S}_{n}\right\}$ and to $\operatorname{Perm}_{n}^{\prime \prime}:=\left\{\left([-n+1]^{\pi},[-n+3]^{\pi}, \ldots,[n-1]^{\pi}\right): \pi \in \mathfrak{S}_{n}\right\}$.

Proposition 2. [\{P:movedPerm $\}] \operatorname{Perm}_{n}^{\prime}=\left\{d^{-}\left(\vec{K}_{n}\right): \vec{K}_{n}\right.$ is an acyclic orientation of $\left.K_{n}\right\}$, and $\operatorname{Perm}_{n}^{\prime \prime}=\left\{d^{ \pm}\left(\vec{K}_{n}\right): \vec{K}_{n}\right.$ is an acyclic orientation of $\left.K_{n}\right\}$.

Side note: A directed complete graph is known in graph theory as a tournament.
Proof. Theorem 6(a) implies that the acyclic orientations of K_{n} are derived from linearly ordering V. From that it is clear that the outdegree vector is a permutation of $\{0,1, \ldots, n-1\}$ and the net degree vector is a permutation of $\{-(n-1),-(n-3), \ldots, n-3, n-1\}$.

Proof of Theorem 1. By Proposition 2, $\Pi_{n-1}^{\prime \prime}=A\left(K_{n}\right)$. Thus the theorem is a special case of Theorem 7.

2. Acyclic and Cyclic Orientations

A cycle \vec{C} is a circle C oriented so that every edge goes the same way around C. If $C=e_{01} e_{12} \cdots e_{l-1, l}$ where $v_{0}=v_{l}$ (and $l>0$; a circle cannot have length 0), the cycle is $\vec{e}_{01} \vec{e}_{12} \cdots \vec{e}_{l-1, l}$ or its reverse, $\vec{e}_{l, l-1} \cdots \vec{e}_{21} \vec{e}_{10}$. Note that each vertex has indegree 1 and outdegree 1, so it has no source (a vertex with no outgoing edges) or sink (a vertex with no incoming edges). (An isolated vertex is a source and a sink.)

An oriented graph is acyclic if it has no cycles. Otherwise it is (surprise!) cyclic. (It is totally cyclic if every edge belongs to a cycle. Total cyclicity is dual to acyclicity, but I won't go into that.) An acyclically oriented graph cannot have loops, because an oriented loop is already a cycle.

Suppose we partially order the vertex set V by \prec, which is suitable for Γ in the sense that for every edge $v w$ the vertices v and w are comparable. Then we orient Γ by choosing the orientation $\vec{e}_{i j}$ if $v_{i} \prec v_{j}$. We call this the orientation implied by \prec. (Suitability is just the requirement that ensures every edge is oriented. Note that we could assume \prec is a total ordering, since every partial ordering extends to a total ordering.)

Lemma 3. [\{L:po\}] The orientation implied by a suitable partial ordering of V is acyclic.

Proof. Suppose there were a cycle $e_{01} e_{12} \cdots e_{l-1, l}$, where $v_{0}=v_{l}$. Then $v_{0} \prec v_{1} \prec \cdots \prec v_{l}$, but by transitivity then $v_{0} \prec v_{l}=v_{0}$, which violates reflexivity.

There is a kind of converse.
Lemma 4. [\{L:acyc\}] Suppose $\vec{\Gamma}$ is acyclic. Define $v_{i} \prec_{\vec{\Gamma}} v_{j}$ if there is a (directed) path from v_{i} to v_{j}. Then $\prec_{\vec{\Gamma}}$ is a partial ordering of V; for every edge there is one orientation $\vec{e}_{i j}$ such that $v_{i} \prec_{\vec{\Gamma}} v_{j}$; and that is the orientation of $e_{i j}$ in $\vec{\Gamma}$.

Furthermore, $\prec_{\vec{\Gamma}}$ is the unique minimal partial ordering that implies the orientation $\vec{\Gamma}$ of Γ; that is, a partial ordering that implies $\vec{\Gamma}$ contains $\prec_{\vec{\Gamma}}$.
Proof. NEEDS PROOF

Lemma 5. [\{L:sinksource\}] An acyclically oriented graph has a source and a sink.
Proof. Take the minimal associated partial ordering $\prec_{\vec{\Gamma}}$. The sources are the minimal elements of $\prec_{\vec{\Gamma}}$ and the sinks are the maximal elements of $\prec_{\vec{\Gamma}}$.

The Hasse diagram of a partially ordered set $(V,<)$ is a directed graph if we orient all edges upwards. The comparability graph of $(V,<)$ is the graph on V with an edge $v w$ if and only if v and w are comparable; by directing every edge upwards, that is, $\overrightarrow{v w}$ if $v<w$, we get the comparability digraph $\operatorname{Comp}(<)$.
Theorem 6. [\{T:ao \}] Consider the orientations of a graph Γ.
(a) An orientation is acyclic if and only if it is derived from a partial ordering of V.
(b) An orientation $\vec{\Gamma}$ is acyclic if and only if it satisfies $\operatorname{Hasse}(\prec) \subseteq \vec{\Gamma} \subseteq \operatorname{Comp}(\prec)$ for some partial ordering \prec of V.
(c) Suppose $\vec{\Gamma}$ is an orientation of Γ. If $\vec{\Gamma}$ is acyclic, there is no other orientation with the same net degree vector. If $\vec{\Gamma}$ is acyclic, there does exist another orientation with the same net degree vector.

Proof of (a). The forward direction is Lemma 4. The backward direction is Lemma 3.
Proof of (b). If $\vec{\Gamma}$ is acyclic, then $\prec_{\vec{\Gamma}}$ is a partial ordering \prec with the property stated in the theorem.

Conversely, if there exists such a partial ordering \prec, then MORE MORE MORE

Proof of (c). First, suppose $\vec{\Gamma}$ is acyclic. (We don't exclude the possibility that $\vec{\Gamma}^{\prime}=\vec{\Gamma}$.) Then $\vec{\Gamma}$ has a source. The indegree of a source v_{i} is 0 , so the net degree is $-d\left(v_{i}\right)$; conversely, if $d^{ \pm}\left(v_{i}\right)=-d\left(v_{i}\right)$, then v_{i} is a source. Thus, we can identify a source from $d^{ \pm}(\vec{\Gamma})$.

Now define $\vec{\Gamma}^{\prime}:=\vec{\Gamma} \backslash v_{i}$. We can predict the net degree vector of $\vec{\Gamma}^{\prime}$ from that of $\vec{\Gamma}$ and the knowledge that v_{i} is a source; specifically,

$$
d_{j}^{ \pm}\left(\vec{\Gamma}^{\prime}\right)= \begin{cases}d_{j}^{ \pm}(\vec{\Gamma}) & \text { if there is no edge } v_{i} v_{j} \\ d_{j}^{ \pm}(\vec{\Gamma})-1 & \text { if there is an edge } v_{i} v_{j}\end{cases}
$$

since any edge $v_{i} v_{j}$ is oriented towards v_{j}. It follows that, if no other orientation of $\Gamma^{\prime}=\Gamma \backslash v_{i}$ has the same net degree vector as $\vec{\Gamma}^{\prime}$, then the orientation $\vec{\Gamma}$ is determined. Hence, by induction on $n, \vec{\Gamma}$ is determined by its net degree vector.

For the second part, suppose $\vec{\Gamma}$ has a cycle $\vec{e}_{01} \vec{e}_{12} \cdots \vec{e}_{l-1, l}$. Define $\vec{\Gamma}^{\prime}$ to be $\vec{\Gamma}$ with the cycle edges reversed. That does not change the net degree vector; hence $d^{ \pm}(\vec{\Gamma})=d^{ \pm}\left(v G^{\prime}\right)$.

The proof shows that we can identify all sources (and similarly all sinks) of an orientation from the net degree vector; by repeatedly stripping them out, we can tell algorithmically from $d^{ \pm}(\vec{\Gamma})$ whether $\vec{\Gamma}$ is cyclic or acyclic. I don't know whether that can be done more directly.

3. The Acyclotope is a Zonotope

A convex polytope is the convex closure of a finite set of points: $P=\operatorname{conv}(S)$ where $S \subset \mathbb{R}^{n}$ is finite. A vertex is a point $p \in S$ that is necessary to get the right convex hull; i.e., $\operatorname{conv}(S \backslash p) \subset P$. (This is not the definition but it's a property proved in courses on convex polytopes.) The vertex set of P is denoted by $\operatorname{Vert}(P)$.

We assign to an edge $e_{i j}$ the vector $x\left(e_{i j}\right):=b_{j}-b_{i}$ in \mathbb{R}^{n}, the vertex space, where (as before) b_{1}, \ldots, b_{n} is the standard orthonormal basis. Since we didn't orient the edge, this definition allows either $b_{j}-b_{i}$ or $b_{i}-b_{j}$; that won't matter. If it does matter, we orient the edge and define $x\left(\vec{e}_{i j}\right):=b_{j}-b_{i}$. (Note that a loop gets the zero vector.)

Theorem 7. [\{T:acyclotope $\}]$ The acyclotope $A(\Gamma)$ has the following properties.
(a) $A=\sum_{e_{i j} \in E ; i<j}\left[-x\left(e_{i j}\right),+x\left(e_{i j}\right)\right]$.
(b) $A=\operatorname{conv}\left\{d^{ \pm}(\vec{\Gamma}): \vec{\Gamma}\right.$ is an orientation of $\left.\Gamma\right\}$.
(c) $\operatorname{Vert}(A)=\left\{d^{ \pm}(\vec{\Gamma}): \vec{\Gamma}\right.$ is an acyclic orientation of $\left.\Gamma\right\}$.

Part (i) shows that the acyclotope is a zonotope.
Proof. We begin with a definition. Let

$$
A^{\prime}:=\operatorname{conv}\left\{d^{ \pm}(\vec{\Gamma}): \text { all orientations } \vec{\Gamma}\right\}
$$

We'll prove some properties of A^{\prime} and that $A=A^{\prime}$.
Lemma 3.1. [\{L:A'zono \}] $A^{\prime}:=\sum_{e_{i j}}\left[-x\left(e_{i j}\right), x\left(e_{i j}\right)\right]$.
Proof.
Lemma 3.2. [\{L:A'zono\}] If $\vec{\Gamma}$ is cyclic, then $d^{ \pm}(\vec{\Gamma})$ is not a vertex of A^{\prime}.
Proof.
Now, two lemmas about A.
Lemma 3.3. [\{L:acyclicvert\}] If $\vec{\Gamma}$ is acyclic, then $d^{ \pm}(\vec{\Gamma})$ is a vertex of $A(\Gamma)$.
Proof. Since $\vec{\Gamma}$ is acyclic, it has a source. The indegree of a source v_{i} is 0 , so the net degree is $-d\left(v_{i}\right)$; conversely, if $d^{ \pm}\left(v_{i}\right)=-d\left(v_{i}\right)$, then v_{i} is a source. Thus, we can identify a source from $d^{ \pm}(\vec{\Gamma})$.

MORE MORE MORE

Lemma 3.4. [\{L:cyclicnovert \}] If $\vec{\Gamma}$ is cyclic, then $d^{ \pm}(\vec{\Gamma})$ is not a vertex of $A(\Gamma)$.

Proof. Suppose $\vec{\Gamma}$ has a cycle $\vec{e}_{01} \vec{e}_{12} \cdots \vec{e}_{l-1, l}$. Define $\vec{\Gamma}^{\prime}$ to be $\vec{\Gamma}$ with reoriented edge \vec{e}_{10} instead of \vec{e}_{01}. Then

$$
d_{i}^{ \pm}\left(\vec{\Gamma}^{\prime}\right)= \begin{cases}d_{i}^{ \pm}(\vec{\Gamma}) & \text { if } v_{i} \neq v_{0}, v_{1} \\ d_{i}^{ \pm}(\vec{\Gamma})+2 & \text { if } v_{i}=v_{0} \\ d_{i}^{ \pm}(\vec{\Gamma})-2 & \text { if } v_{i}=v_{1}\end{cases}
$$

Define $\vec{\Gamma}$ ' to be $\vec{\Gamma}$ with reoriented edges $\vec{e}_{21}, \ldots, \vec{e}_{l, l-1}$; then

$$
d_{i}^{ \pm}\left(\vec{\Gamma}^{\prime \prime}\right)= \begin{cases}d_{i}^{ \pm}(\vec{\Gamma}) & \text { if } v_{i} \neq v_{0}, v_{1} \\ d_{i}^{ \pm}(\vec{\Gamma})-2 & \text { if } v_{i}=v_{0} \\ d_{i}^{ \pm}(\vec{\Gamma})+2 & \text { if } v_{i}=v_{1}\end{cases}
$$

Since $d^{ \pm}(\vec{\Gamma})=d^{ \pm}\left(\vec{\Gamma}^{\prime}\right)+d^{ \pm}\left(\vec{\Gamma}^{\prime \prime}\right)$, the net degree vector of $\vec{\Gamma}$ is not a vertex of $A(\Gamma)$.
The proof of Theorem 7 continues ...
MORE MORE MROE

References

[1] Thomas Zaslavsky, Signed graph coloring. Discrete Math. 39 (1982), 215-228. MR 84h:05050a. Zbl 487.05027.
[2] Thomas Zaslavsky, Orientation of signed graphs. European J. Combin. 12 (1991), 361-375. MR 93a:05065. Zbl 761.05095.

