Math 580A: Convex Polytopes Additional Exercises

I. Show that the permutation vector $(1,2, \ldots, d)$ is the intersection of the permutahedron Π_{d-1} with the hyperplane $x_{1}+\frac{1}{2} x_{2}+\cdots+\frac{1}{d} x_{d}=d$. (Note that Π_{d-1} lies in the positive (\geq) half-space of this hyperplane.)

Deduce that $\operatorname{Vert}\left(\Pi_{d-1}\right)$ is the set of permutation vectors. (This part is optional, since I don't recall specifically assigning it, but it's good if you did it.)
II. Why did I use the net degree vector to define the acyclotope $A(\Gamma)$, and not the in-degree vector as we did for the permutahedron (strictly speaking, for $\Pi_{d-1}-\mathbf{1}$)?
III. Prove the formula on page 4 for $\operatorname{conv}(K)$ when K is finite.
IV. P is a convex polyhedron. Prove that

$$
\begin{align*}
\operatorname{rec}(P) & =\bigcup\{\operatorname{pos}(\mathbf{y}):(\exists \mathbf{x} \in P) \mathbf{x}+\operatorname{pos}(\mathbf{y}) \subseteq P\} \tag{1}\\
& =\left\{\mathbf{y}:(\exists \mathbf{x} \in P)\left(\forall t \in \mathbb{R}_{\geq 0}\right) \mathbf{x}+t \mathbf{y} \in P\right\}
\end{align*}
$$

V. P is a convex polyhedron. Prove that

$$
\begin{align*}
\operatorname{lineal}(P) & =\bigcup\{\operatorname{lin}(\mathbf{y}):(\exists \mathbf{x} \in P) \mathbf{x}+\operatorname{lin}(\mathbf{y}) \subseteq P\} \tag{2}\\
& =\{\mathbf{y}:(\exists \mathbf{x} \in P)(\forall t \in \mathbb{R}) \mathbf{x}+t \mathbf{y} \in P\}
\end{align*}
$$

VI. Find a good definition of lineal (\varnothing). Explain why you think it's good.
VII. Ziegler makes many unproved assertions, which he assumes are elementary. You, as a reader, ought to look for such assertions and see if you can prove them. Here are the ones I noticed about the lineality space. P is any polyhedron, H - or $\mathrm{V}-$, possibly empty.
(a) Lemma A. lineal (P) is a homogeneous subspace of \mathbb{R}^{d}.
(b) Lemma B. Let U be any linear subspace complementary to lineal (P). Then lineal $(P \cap U)=\{\mathbf{0}\}$.
(c) Proposition C. $P=\operatorname{lineal}(P)+(P \cap U)$. Moreover, the representation $\mathbf{x}=\mathbf{y}+\mathbf{z}$ for $\mathbf{x} \in P$, where $\mathbf{y} \in \operatorname{lineal}(P)$ and $\mathbf{z} \in P \cap U$, is unique.
(d) Corollary D. $P \cap U=\varnothing$ iff $P=\varnothing$.
(e) Proposition E. For an H-polyhedron $P=P(A, \mathbf{z})$, lineal $(P)=\operatorname{Nul} A$. $(\operatorname{Nul} A:=\{\mathbf{x}: A \mathbf{x}=\mathbf{0}\}$ is the null space of A.)
Prove Proposition C and any one other of these except Lemma A (which we did in class).
VIII. Find the polar dual, P^{\triangle}.
(a) P_{1} is the intersection of half-spaces $x \geq-2, y \geq-1, x-y \leq 2$, and $2 y-x \leq 10$.
(b) $P_{2}=\operatorname{conv}\{(1,3),(-1,3),(-2,-3),(-1,-3)\}$.
(c) P_{3} is P_{2} translated by $(6,6)$. Compare P_{3}^{\triangle} with P_{2}^{\triangle}. Can you identify an effect of translation?
IX. Prove that any dependency λ is a linear combination of minimal dependencies (circuit dependencies), such that the circuits are all contained in supp λ. Your proof should apply to both linear and affine dependencies.
(This is a warm-up problem for what we want for Ch. 6, where we want the circuit dependencies to conform to λ.)
X. Let

$$
A=\binom{-I_{5}}{B}
$$

where

$$
B=\left(\begin{array}{ccccc}
-1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)
$$

and let

$$
\mathbf{z}=\binom{\mathbf{0}_{5}}{\mathbf{1}_{4}}
$$

Find all the vertices of $P(A, \mathbf{z})$. (You should check that it's bounded.) Are they integral?

