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The purpose of the following is to keep my book

Günter M. Ziegler:

Lectures on Polytopes,
Graduate Texts in Mathematics 152,
Springer-Verlag New York Berlin Heidelberg, Revised edition, 1998.

up-to-date electronically. Thus, this is an electronic preprint, the newest, latest and
hottest version of which you should always be able to get via our WWW-server, at

http://www.math.tu-berlin.de/~ziegler

Note: these updates refer to the 1998 revised edition — see the separate notes on my
homepage for updates to the 1995 original edition that went into the revision.

The following is a wild mix of small and large corrections, updates, references I over-
looked, new work, additional comments, and more. However, just as in the book, there is
no claim or even attempt to be complete or encyclopedic in the coverage of new and old
results. This is my own personal selection and bias.

Note also that the second edition of Grünbaum’s classic “Convex Polytopes” [234]
has just appeared! In addition to an unaltered reprint of the original text, it contains
contains over 100 pages of new material (written by Volker Kaibel, Victor Klee and
myself): updates on topics covered in Grünbaum’s book, new references, etc.

I am always eager to hear about your corrections, updates and comments!
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Page 23:

The latest TSP record is the May 2004 optimal solution of a 24,978-city instance, by
David Applegate, Bob Bixby, Vašek Chvátal and Bill Cook. See the TSP web site [549]
for this, and for further references. (added 8/99)

Page 26:

Asymptotically the best known upper bound for the maximal number of facets of a d-
dimensional 0/1-polytope is

f(d) ≤ 30 (d − 2)!

for all large enough d, due to Fleiner, Kaibel & Rote [555] (8/99)

Page 48:

Several of the convex hull codes (ccd, lrs [542], and PORTA) are integrated in the
polymake system [559, 560], which is highly recommended as a tool for the computation
and the combinatorial analysis of example polytopes. You should get hands-on experi-
ence with all the examples appearing in the polytopes book, by generating, viewing, and
analyzing them in the polymake framework! (8/99)

An effective (“polynomial in input plus output size”) convex hull code for the special (and
especially interesting, see [584]) case of 0/1-polytopes is provided by Bussieck & Lübbecke
[548]. An implementation, zerOne, is available [574]. (10/00)

Page 84: The Hirsch Conjecture is sharp:

The lower bound result of Holt & Klee was extended by Fritzsche & Holt [556]: for all
n > d ≥ 8, there is a simple d-polytope with n facets whose diameter is at least n − d.

(8/99)

Page 95, Reconstructing Polytopes:

A practical study about reconstructing simple polytopes from their graphs is Achatz &
Kleinschmidt [540]. An extension of Kalai’s theorem and proof to non-simple polytopes
was given by Joswig [568]. (8/99)

Page 95, Balinski’s Theorem:

A stronger, “directed” version of Balinski’s theorem is hidden in Holt & Klee [567]: if P is
a d-polytope and cx is a linear function in general position, then there are d vertex-disjoint
cx-monotone paths from the minimal vertex to the maximal vertex of P . (8/99)

Furthermore, Mihalisin & Klee [575] have proved a quite surprising converse to the 3-
dimensional Holt-Klee theorem: indeed, acyclic orientation of planar 3-connected graph
which has exactly one sink on every face, and which has 3 independent paths from the
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global source to the global sink, is realizable as the directed graph of a 3-polytope given
by a linear function. (6/00)

Page 98, Problem 3.4 (iv)(∗):

There are cubical 4-polytopes with the graph of the n-cube, for any n ≥ 4. More generally,
“neighborly cubical polytopes exist!” — see Joswig & Ziegler [569].
In particular, the graph of the n-cube is dimensionally ambiguous for all n ≥ 5. This
also follows from the existence of d-polytopes with the graph of the (d + 1)-cube, for
d ≥ 4, which can be identified within Blind & Blind’s [544] classification of all cubical
d-polytopes with 2d+1 vertices. (11/98)

Page 100, Problem 3.11∗ – “Monotone Upper Bound Problem”:

For n > d ≥ 2 let Mubt(d, n) = f0(Cd(n)∆) be the maximal number of vertices of a
(simple) d-polytope with n facets. It is still not clear whether equality holds in

M(d, n) ≤ Mubt(d, n)

for all n > d ≥ 2. However, there is definite progress:

• Clearly equality holds for d ≤ 3, and for n = d + 1.
• Pfeifle [577, Chap. 5] has shown by an explicit inductive construction (and a tour-de-

force in projective geometry) that equality holds for d = 4 and for all n ≥ 5.
This is non-obvious even for n = 7, where P ∼= C4(7)∆ has seven combinatorial types
of Hamiltonian paths that give an “abstract objective function” (AOF) that satisfies
the Holt-Klee [567] conditions (cf. the comments on Balinski’s theorem, p. 95). Of
these seven types, exactly four are realizable geometrically, according to Pfeifle [577,
Chap. 4].
For n = 8, enumeration yields that C4(8)∆ has no Hamiltonian path that satisfies the
AOF and HK conditions. This yields the negative answer to problem Problem 8.41(∗)

(page 290). However, there are two other combinatorial types of polar-to-neighborly
simple 4-polytopes with 8 facets, and both yield realizable paths.

• The answer is also yes for n = d+2. This was shown by Gärtner, Solymosi, Tschirschnitz,
Valtr & Welzl [558]. The construction by Gärtner et al. is in terms of the Gale∆ dia-
grams of Welzl, which are also used by Pfeifle. (5/03)

Page 100, Problem 3.13(∗) – “Perles’ Conjecture”:

This is false – counterexamples were constructed by Haase & Ziegler [562] (March 2000):
The proof works by polarizing the problem, and then constructing counterexamples from
2-complexes that have no free edge, but no 2-dimensional homology either; specifically we
use variants of the Borsuk’s “dunce hat” or of “Bing’s house.” (6/00)
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Pages 123, Problem 4.16∗:

The currently best upper bounds are f s
3 (n) ≤ 28.45n (valid for any 3-polytope with at least

one triangle facet, and f3(n) ≤ 533n2

for all 3-polytopes with a large number n of vertices,
due to Ribó Mor and Rote [580, Chap. 6]. This is based on bounds on the maximal number
of spanning trees in a planar graph on n vertices. It improves the previously best bounds
obtained by Stein [582] on the basis of Richter-Gebert’s approach/treatment in [424].

(4/05)

Pages 123-124, Problem 4.19∗:

A suitable realization for the truncated tetrahedron, as well as for truncated cube and
truncated octahedron, can indeed be constructed; explicit models were built by An-
dreas Paffenholz, July 2004. Data and pictures are now available at http://www.math.

tu-berlin.de/~paffenho/truncated3polys/

However, there still doesn’t seem to be a proof or disproof for general 3-polytopes. (4/05)

Pages 131-132, Piles of cubes:

More interesting structure connected with the “piles of cubes” polytopes constructed and
studied here has recently been uncovered by Athanasiadis [541]. (11/98)

Page 137, A Pile of cubes polytope:

Here is a correct picture of the Schlegel diagram of the pile of cubes polytope P̃3(2, 2, 2),
produced by Marc Pfetsch using polymake [559, 560] plus javaview [579]: (7/00)

Page 146, Problem 5.3 (iii)-(iv)(∗):

It turns out that even ∆3 × ∆3 has a non-regular triangulation – see De Loera [339].
(7/00)
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Chapter 6:

See Eisenbud & Popescu [553] for an entirely different (algebraic geometry) view of Gale
diagrams. (7/98)

Page 172, Counting d-polytopes with d + 3 vertices

Fusy [557] solves the enumeration problem for d-polytopes with d+3 vertices – extending
the work by Perles reported in [561, Sect. 6.3], and correcting the earlier attempt by Lloyd
[573].

Exercise 6.20*, page 189:

This exercise is excessively optimistic, and should have had an asterisk: it is quite easy
to see that the classification problem for centrally symmetric polytopes would also give a
classification of the ways to cut the d-cube by an affine hyperplane – and this is quite out
of reach! Of course this can be done for small d, and should be done; the case d = 4 is
contained in [234, Section 6.4]. (8/01)

Page 232, item (ii):

The boundary complex C(∂P ) of a polytope P is a polytopal complex. It is simplicial
if and only if P is a simplicial polytope. Thanks to Ichiro Fukushima for this and the
following corrections. (3/99)

Page 259, line 7∗:

“k = 1” and “k = 2” should be “k = 0” and “k = 1.” (Sperner’s Lemma for k = 0 is
trivial, for k = 1 it says e

v
≤ v−1

2
. Note that our statement does not include the case

k = 0.) (3/99)

Page 263:

Part (iii) of the Kruskal-Katona thorem should be fk−1 ≥ ∂k+1(fk) rather than fk−1 ≥

∂k(fk)! (3/99)

Page 271, The upper bound theorem:

The maximal g-vector for given g1 is misstated; is should have been

gk =

((

g1

k

))

=

(

g1 + k − 1

k

)

=

(

n − d + k − 2

k

)

. (7/00)

Page 274, lines 1-8:

hℓ should read gℓ (3/99)
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Pages 274-275, Nonunimodal f-vectors

Finally, in 2006 some of Eckhoff’s unpublished work on non-unimodal f -vectors was pub-
lished, also with current updates: See [551]!

Pages 275-277, Nonshellable balls:

Masahiro Hachimori [563, 564] has studied constructibility of simplicial balls (a concept
that is weaker than shellability). He found, for example, that while my 10 vertex example
of a non-shellable ball [539] is constructible, Furch/Bing’s knotted hole balls are not
constructible — this is stronger than just saying that they are not shellable. (For such
balls based on Bing’s house, see also the much earlier paper by Lickorish [572].)

(Hachimori also found that the facet list of Grünbaum’s nonshellable ball, as given in [164],
is incorrect: the facet “1 7 8 9” should be replaced by “1 7 8 10”. A set of coordinates
for Grünbaum’s ball is also given in [564].) (8/98)

Newman’s ball on page 276 has (30 vertices and) 72 facets, as correctly stated in [583].

Now Frank Lutz has constructed a non-shellable 3-ball with the minimal (!) number of 9
vertices and 18 facets. He has also obtained a non-shellable 3-sphere with 13 vertices and
56 facets, based on the trefoil knot. (Non-shellability follows from Hachimori & Ziegler
[565].) (5/03)

Page 278, Many triangulated spheres:

There is a number of updates in connection with Kalai’s “many triangulated spheres”
paper [274]: First, Pfeifle [576] showed that all of the Kalai’s “squeezed” 3-spheres are
polytopal. This explains why Kalai’s techniques were not sufficient to prove that there
are asymptotically much more triangulated 3-spheres than there are combinatorial types
of simplicial 4-polytopes. (Pfeifle also reproves Lee’s result [330] that Kalai’s spheres are
shellable.)

However, in recent work Pfeifle & Ziegler [578] managed to prove that indeed the number
of simplicial 3-spheres on n vertices is asymptotically much larger than the number of 4-
polytopes with the same number of vertices. Thus for d = 3 “most” triangulated d-spheres
are non-polytopal. (The same statement for d > 3 was Kalai’s main result from [274].)

(5/03)

Page 280, The “toric h-vector”

There is important, but difficult, recent progress connected to the “toric h-vector” of
Stanley. It was known already that, due to the so-called hard Lefschetz theorem for toric
varieties, that even for non-simplicial polytopes, the toric h-vectors of rational convex
polytopes — satisfies the generalized lower bound inequalities

1 = htor
0 ≤ htor

1 ≤ . . . ≤ htor
⌊d/2⌋

which may also be written as

gtor
1 , gtor

2 , . . . , gtor
⌊d/2⌋ ≥ 0.
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Now, based on the “combinatorial intersection homology” theory of Bartels, Brasselet,
Fieseler & Kaup [543] and (independently) Bressler & Lunts [547], Karu has [571] extended
these (non-trivial) equations to arbitrary, possibly non-rational polytopes.

The generalized lower bound inequality gtor
2 (P ) ≥ 0 was previously established by Kalai

[570] for general polytopes, using much more elementary rigidity type arguments, for
the inequality “gtor

2 (P ) ≥ 0,” which for 4-polytopes, for example, translates into f03 ≥

3f0 + 3f3 − 10. See the comments below for p. 287. (10/03)

Page 281, Problem 8.1(iv)(∗): Shelling crosspolytopes?

Tracy Hall [566] has proved that the crosspolytopes are not extendably shellable — via an
unexpected connection to oriented matroid theory, and the existence of oriented matroids
with an element (pseudosphere) that is not adjacent to a mutation (simplicial region), as
first extablished by Richter-Gebert [581] and Bokowski & Rohlfs [546]. Explicit data are
availble at http://math.berkeley.edu/~hthall/stuck.html. (10/03)

Page 282, Problem 8.4∗: Stars and links of shellable complexes

This problem asked whether stars and links of shellable polytopal complexes are neces-
sarily shellable as well. Matias Courdurier [550] has shown that the answer for “stars” is
yes, and under extra assumptions (e. g. if the facets of the complex are simple) the answer
is yes for links as well.

Page 279, The lower bound theorem:

Blind & Blind [545] gave an elementary proof of the lower bound theorem, including the
characterization of equality (only stacked polytopes, for d ≥ 4), using shellings. (4/98)

Page 287, Problem 8.29*, The f-vectors of d-polytopes

For the situation in dimension d = 4, see my survey [585] for the ICM 2002 in Beijing. It
turns out that the key problem for d = 4 is whether the “fatness” parameter

F(P ) :=
f1 + f2 − 20

f0 + f3 − 10

can be arbitrarily large. This parameter is smaller than 3 for simple or simplicial poly-
topes, but it is larger than 5 for some 2-simple, 2-simplicial 4-polytopes, as constructed
by Eppstein, Kuperberg & Ziegler [554], and approaches 9 for the “projected products of
polygons” presented in [586].

For recent progress in higher dimensions, and a summary of the known linear inequalities
in dimensions 5 to 8, see Ehrenborg [552]. (5/03)

Page 290, Problem 8.41(∗), “Monotone Upper Bound Problem”:

The answer is no: C4(8)∆ cannot be realized with an increasing monotone path, according
to Pfeifle [577, Chap. 4]. See also the comments on Problem 3.11* (page 100). (5/03)
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